Cho 2 đa thức :
F(x)= 2x5 + 3x3 - 4x4 + 5x - x2 + x3 + x1
G(x)= -x2 - x5 + 2x4 - 3x3 + x4 + 7
a) Thu gọn và sắp xếp đa thức F(x) và G(x) theo lũy thừa giảm dần của biến (x)
b) Tính F(x)-G(x)
- Giusp mk nha <3
Cho hai đa thức :
M( x) = 3x3 + 6x2 - 3 x + 2
N( x) = 4x3 - 4x2 - 8x + 5
a/ Tính M(x) + N(x)
b/ Tính M(x) – N(x)
Cho hai đa thức A(x) = 3(x2+2-4x)-2x(x-2)+17 và B(x) = 3x2-7x+3-3(x2-2x+4) a) Thu gọn A(x),B(x). Sắp xếp các đa thức theo luỹ thừa giảm dần của biến. Tìm hệ số cai nhất, hệ số tự do của hai đa thức đó b) Tìm N(x) sao cho N(x)-B(x)=A(x) và M(x) sao cho A(x)-M(x)=B(x).
Bài 1 : Cho đa thức: f(x)= x2-a.x-3 và g(x)= (x3-x2-x-a-1)2015
a, Tìm a biết -1 là 1 nghiệm của f(x)
b, Với a tìm được ở câu a, Tìm nghiệm còn lại của f(x) và tính g(2).
Mọi người giúp mình với ạ. Mình cảm ơn mọi người nhiều.
Cho đa thức A(x)=3x^2+5x^3+x-2x^2-x^3+1-4x^3-2x-3
a) thu gọn đa thức
b) tìm x để giá trị của đa thức A(x) bảng giá trị của đa thức B(x)=2x-2
Giúp mình nhá chiều mình nộp rồi
Cho 2 đa thức: P(x)=3x^2+7+2x^4-3x^2-4-5x+2x^3 và Q(x)=3x^3+2x^2-x^4+x+x^3+4x-2+5x^4 a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo luỹ thừa giảm dần của biến. b) Tính P(-1) và Q(0) c) Tính G(x) = P(x) + Q(x) d) Chứng tỏ rằng đa thức G(x) luôn dương với mọi giá trị của x
Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
a) Xác định đa thức P(x) và Q(x)
b) Tìm nghiệm của đa thức P(x) và Q(x)
c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a}
\)
Cho đa thức f(x) = ax^2 + bx + c
chứng tỏ rằng a+b +c =0 thì đa thức f(x) có 1 nghiệm = 1
b áp dụng tìm 1 nghiệm của đa thức f(x) = 5x^2 -6x +1
A(x)=x^3+2x^2+2x^3-1-2x^2+3x
B(x)=x^2-2x^3+4x-3
a)Thu gọn và sắp xếp các đa thức theo luỹ thừa giảm của biến và tìm bậc của đa thức
b)Tính A(x)+B(x),B(x)-A(x)
c)Đặt M=A(x)+B(x).Tính M(-3)