2) Ta có: \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+1\right)^2+1>0\)
Vậy \(x^2+2x+2>0\forall x\in Z\)
3)Ta có: \(x^2-x+1=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{4}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\dfrac{1}{4}\right)^2+\dfrac{3}{4}>0\forall x\)
Vậy \(x^2-x+1>0\forall x\in Z\)
4)Ta có: \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)
Vì \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-2\right)^2-1< 0\forall x\)
Vậy \(-x^2+4x-5< 0\forall x\in Z\)
Bài 1 và 5 từ từ nha
1)
Để 10n2+n-10 chia hết cho n-1 thì \(1⋮n-1\)
\(\Rightarrow n-1\inƯ\left(1\right)\)
\(\Rightarrow n-1=1\)
\(\Rightarrow n=0\)
5)Ta có: \(x^2-y^2+6x+9=\left(x+3\right)^2-y^2=\left(x+y+3\right)\left(x-y+3\right)\)
\(\Rightarrow\)\(\left(x^2-y^2+6x+9\right):\left(x+y+3\right)\)
\(=\left(x+y+3\right)\left(x-y+3\right):\left(x+y+3\right)\)
\(=x-y+3\)