vẽ tam giác trong hình trong k có góc vuông
a) xét tứ giác edbc có
bdc = 90 độ( bd vuông góc ac)
ceb= 90 độ( ce vuông góc ab )
nên 2 đỉnh d và e cùng nhìn 1 cạnh bc dưới 1 góc 90 độ
vậy tức giác bdec nội tiếp đường tròn đường kính bc
vẽ tam giác trong hình trong k có góc vuông
a) xét tứ giác edbc có
bdc = 90 độ( bd vuông góc ac)
ceb= 90 độ( ce vuông góc ab )
nên 2 đỉnh d và e cùng nhìn 1 cạnh bc dưới 1 góc 90 độ
vậy tức giác bdec nội tiếp đường tròn đường kính bc
Giúp mình với
giúp mình với
Giúp mình bài này với
Giúp mình câu hình với ạ . cần gấp
GIÚP MÌNH VỚI Ạ MÌNH ĐANG CẦN GẤP TT
cho đường tròn (O; R) đường kính BC, điểm A nằm ngoài đường tròn với OA = 2R. Vẽ hai tiếp tuyến AD và AE với đường tròn (D, E là tiếp điếm).
a)Chứng minh: Tứ giác ADOE nội tiếp và xác định tâm I của đường tròn
b. Chứng minh: tam giác ADE đều.
c. Vẽ DH vuông góc CE (H thuộc CE). Gọi P là trung điểm của DH, CP cắt đường tròn tại Q (Q khác C). AQ cắt đường tròn tâm O tại M. Chứng minh: AQ. AM = 3R2.
d. Chứng minh: AO là tiếp tuyến của đường tròn ngoại tiếp tam giác ADQ
Giúp mình bài 4.2 . Mình cần gấp !!!!!
Cho đường tròn (O;R), đường kính AB, trên (O;R) lấy điểm C sao cho AC< BC. Tiếp tuyến tại B của (O) cắt AC tại D.
a) Chứng minh AD ⊥ BC từ đó chứng minh AC.AD=4R2
b) Gọi K là trung điểm BD, chứng minh KC là tiếp tuyến của (O;R).
Ai giúp mình với ạ. mình cảm ơn nhiều
Giúp mình bài này với ạ. Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn đó, vẽ các tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm).Trên cung nhỏ BC lấy điểm P bất kì (P khác B, P khác C).Kẻ PM vuông góc AB, PN vuông góc AC, PK vuông góc BC (M thuộc AB, N thuộc AC, K thuộc BC) a, Chứng minh tứ giác BKPM nội tiếp đường tròn. b, Chứng minh góc MKP= góc PCB. c, Gọi E, F lần lượt là giao điểm của BP và MK, CP và KN. Chứng minh EF//BC. d, Xác định vị trí điểm P trên cung nhỏ BC để (PM^2 + PN^2 + 2PK^2) đạt giá trị nhỏ nhất
Mn giúp mình từ ý 2 câu b nhé
Cho tam giác ABC có 3 góc nhọn, nội tiếp (O) , các đường cao AD, BE, CF , , cắt nhau tại điểm H . Gọi M là trung điểm của BC , N là điểm đối xứng với D qua M . Đường thẳng NH cắt đường thẳng qua A song song với BC tại P . Gọi I là điểm đối xứng với O qua BC .
a. Chứng minh: BFEC là tứ giác nội tiếp.
b. Chứng minh: tam giác APH đồng dạng tam giác HDN và IH= IB= IC
c, Đường tròn ngoại tiếp tam giác BHC cắt đường tròn ngoại tiếp tam giác AHP tại điểm thứ 2 là G khác H . Chứng minh: góc GHM = 90 độ