Cho hình bình hành ABCD (góc A nhỏ hớn 90 độ), lấy điểm M trên BD sao cho MB < MD. Đường thẳng qua M và song song với AB cắt AD và BC lần lượt tại E và F. Đường thẳng qua M song song với AD cắt AB và AC lần lượt tại K và H.
1. Chứng minh: các đường thẳng EK, HF, BD đồng quy
2. Cho SMKF = 9 cm2 ; SMEH = 25 cm2 . Tính SABCD.
aCho hình thang ABCD (AB<CD). Gọi O là giao điểm hai đường chéo AC và BD. Qua O vẽ đường thẳng song song với AB và cắt AD tại M, BC tại N. a. Chứng minh: AO.OD=OB.OC
b. Chứng minh: MO=NO
c. Chứng minh: 1/AB + 1/CD = 2/MN
Hình thang ABCD (AB // CD, AB < CD) có AC cắt BD tại O.
a) OA = 1/3 OC, AB = 4cm. Tính CD.
b) Từ O kẻ đường thẳng song song với AB, cắt AD và BC lần lượt tại M và N. Chứng minh: O trung điểm MN.
c) Chứng minh: 1/AB + 1/CD = 2/MN.
*cố chứng minh giúp mình câu c nha*
Bài 1: Cho hình vuông ABCD và hai đường chéo AC và BD cắt nhau tại O. Lây điểm N thuộc đoạn AC sao cho AN = ½ NC. DN cắt AB tại I. a) Chứng minh: tam giác ANI đồng dạng với tam giác CND b) Chứng minh: OI// AD c) Gọi E là trung điểm của đoạn OA, đường thắng DE cắt AB tại F. Chứng minh AFN = AEI d) Chứng minh: DE. DF = DN. DI
Cho hình thang vuông ABCD có góc A=góc D=90độ, AC cắt BD tại O.
a, Chứng minh tam giác OAB~OCD và OD/DB=OC/AC.
b,Chứng minh AC^2-BD^2=CD^2-AB^2.
c,Từ O kẻ đường thẳng song song với hai đáy cắt BC tại I ,AD tại J.Chứng minh:1/OI=1/AB+1/CD
Cho hình thang ABCD có AB // CD. Lấy hai điểm M, N lần lượt trên hai cạnh AB, CD sao cho AM/DN =MB/NC . Chứng minh MN đi qua O (O là giao điểm của AD và BC)
Giúp minh vs mn ơi ! Cm mn trc nha :3
Cho tam giác AOB có AB = 18cm; OA = 12cm; OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD = 3cm. Qua D kẻ đường thẳng song song với AB cắt tia AO ở
C.Gọi F là giao điểm của AD và BC
a) Tính độ dài OC; CD
b) Chứng minh rằng FD.BC = FC.AD
c) Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại M và N. Cm: OM = ON.
Cho hình thang ABCD(AB//CD). Gọi I là giao điểm của AC và BD. Đường thẳng qua I song song với AB và CD cắt AD tại K, BD tại J.
1. Cm: \(\frac{1}{IJ}=\frac{1}{AB}+\frac{1}{CD}\).Suy ra I là trung điểm của KJ
2. Cho AB=m, CD=n. Tính tỉ số \(\frac{S_{ABCD}}{S_{AIB}}\) theo m và n .