a) Ta có: \(\frac{6}{\sqrt{2}-\sqrt{3}+3}\)
\(=\frac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{\left(\sqrt{2}-\sqrt{3}+3\right)\left(\sqrt{2}-\sqrt{3}-3\right)}\)
\(=\frac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{5-2\sqrt{6}-9}\)
\(=\frac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{-4-2\sqrt{6}}\)
\(=\frac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{-2\sqrt{2}\left(\sqrt{2}-\sqrt{3}\right)}\)
\(=\frac{3\left(\sqrt{2}-\sqrt{3}-3\right)\left(\sqrt{2}+\sqrt{3}\right)}{-\sqrt{2}\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}\)
\(=\frac{3\sqrt{2}\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}-3\right)}{2}\)
b) Ta có: \(\left(\frac{4}{\sqrt{5}+1}-\frac{4}{\sqrt{5}-1}\right):\sqrt{3+2\sqrt{2}}\)
\(=\left(\frac{4\left(\sqrt{5}-1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}-\frac{4\left(\sqrt{5}+1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\right):\sqrt{2+2\cdot\sqrt{2}\cdot1+1}\)
\(=\left(\frac{4\left(\sqrt{5}-1\right)}{4}-\frac{4\left(\sqrt{5}+1\right)}{4}\right):\sqrt{\left(\sqrt{2}+1\right)^2}\)
\(=\left(\sqrt{5}-1-\sqrt{5}-1\right):\left|\sqrt{2}+1\right|\)
\(=-\frac{2}{\sqrt{2}+1}\)(Vì \(\sqrt{2}+1>0\))
\(=-\frac{2\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}\)
\(=-2\left(\sqrt{2}-1\right)\)
\(=-2\sqrt{2}+2\)