(x2 + x)2 + 4(x2 + x) = 12
⇔ (x2 + x + 2)2 = 16
⇔ (x2 + x + 2)2 - 16 = 0
⇔ (x2 + x + 2 - 4)(x2 + x + 2 + 4) = 0
⇔ (x2 + x - 2)(x2 + x + 6) = 0
⇔ [(x2 + 2x) - (x + 2)](x2 + x + 6) = 0
⇔ [x(x + 2) - (x + 2)](x2 + x + 6) = 0
⇔ (x + 2)(x - 1)(x2 + x + 6) = 0
Vì x2 + x + 6 = (x2 + 2.\(\frac{1}{2}\)x + \(\frac{1}{4}\)) + \(\frac{21}{4}\) = (x + \(\frac{1}{2}\))2 + \(\frac{21}{4}\) ≥ \(\frac{21}{4}\) > 0
Nên suy ra \(\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy nghiệm của pt là x = 1; x = -2
\(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\)
\(\Leftrightarrow\left(x^2+x\right)^2+4\left(x^2+x\right)+4=16\)
\(\Leftrightarrow\left(x^2+x+2\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+2=4\\x^2+x+2=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+2=0\\x^2+x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2+\frac{7}{4}>0\\\left(x+\frac{1}{2}\right)^2+\frac{23}{4}>0\end{matrix}\right.\)
Vậy PTVN