Điều kiện
\(x+1\ne0\Leftrightarrow x\ne-1\) (*)
Với điều kiện đó
* Nếu \(m=1\) thì phương trình vô nghĩa, do đó vô nghiệm
* Nếu \(m\ne1\) thì
\(\frac{x-3}{m-1}=\frac{1}{x+1}\Leftrightarrow\left(x-3\right)\left(x+1\right)=m-1\Leftrightarrow f\left(x\right):=x^2-2x-m-2=0\)
Phương trình bậc hai \(x^2-2x-m-2=0\) có \(\Delta'=m+3\). Xét các trường hợp sau :
* Nếu \(\Delta'<0\)
hay \(m<-3\)
thì \(x^2-2x-m-2=0\) vô nghiệm
* Nếu \(\Delta'\ge0\)
hay \(m\ge-3;m\ne1\)
thì \(x^2-2x-m-2=0\) có hai nghiệm
\(x_{1;2}=1\pm\sqrt{m+3}\)
Do \(m\ne1\) nên \(f\left(-1\right)=\left(-1\right)^2-2\left(-1\right)-m-2=1-m\ne0\)
hay là với mọi \(m\ne1\),
phương trình \(x^2-2x-m-2=0\)
không có nghiệm \(x=-1\)
Nói cách khác, hai nghiệm \(x_{1;2}\) cùng thỏa mãn điều kiện (*). Ta có kết luận :
- Khi \(m<-3\) hoặc \(m=1\) Phương trình vô nghiệm
- Khi \(m\ge-3\) hoặc \(m\ne1\) Phương trình co hai nghiệm \(x=1\pm\sqrt{m+3}\)