Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thiên An

Giải và biện luận phương trình sau :

\(\frac{x^2+2x-m}{x-1}=0\)

Ngọc Vĩ
24 tháng 2 2016 lúc 10:18

Tớ làm nhầm rồi

+) x = 1 => pt vô nghĩa

+) x \(\ne\)0 => pt trờ thành : x2 + 2x - m = 0

Có: \(\Delta=\left(-2\right)^2-4.\left(-m\right)=4+4m\)

Với \(\Delta=0\Rightarrow m=-1\) (pt có nghiệm kép) : x = -2

Với \(\Delta>0\Rightarrow m>-1\) (pt có 2 nghiệm phân biệt): \(x=\frac{-2+\sqrt{4+4m}}{2};x=\frac{-2-\sqrt{4+4m}}{2}\)

Với \(\Delta<0\Rightarrow m<-1\) (pt vô nghiệm) : \(x\in\phi\)

Vậy pt vô nghĩa khi x = 1

       pt có nghĩa khi x khác 1

        - có nghiệm kép: m = -1

        - có 2 nghiệm phân biệt: m > -1

        - vô nghiệm: m < -1

 

Ngọc Vĩ
24 tháng 2 2016 lúc 10:11

+) m = 1 => pt k có nghĩa

+) x\(\ne1\) => pt => x2 + 2x - m = 0 

Có: \(\Delta'=1^2-\left(-m\right)=1+m\)

Với \(\Delta=0\Rightarrow1+m=0\Rightarrow m=-1\) (pt có nghiệm kép): x = \(\frac{-2}{1}=-2\)

Với \(\Delta>0\Rightarrow m>-1\) (pt có 2 nghiệm phân biệt): \(x=\frac{-2+\sqrt{m+1}}{2};x=\frac{-2-\sqrt{m+1}}{2}\)

Với \(\Delta<0\Rightarrow m<-1\) (pt vô nghiệm) : x \(\in\phi\)

Vậy có nghiệm kép khi m = -1

        có 2 nghiệm phân biệt khi m > -1

        vô nghiệm khi m < -1

Bắc Băng Dương
24 tháng 2 2016 lúc 10:15

Điều kiện \(x-1\ne0\) hay \(x\ne1\) Với điều kiện đó, ta có

\(\frac{x^2+2x-m}{x-1}=0\Leftrightarrow x^2+2x-m=0\)   (1)

Phương trình bậc hai (1) có \(\Delta'=1+m\)  Xét các trường hợp sau :

- Nếu \(\Delta'<0\)

hay \(m<-1\) thì phương trình (1) vô nghiệm

- Nếu \(\Delta'\ge0\)

hay \(m\ge-1\) thì phương trình (1) có hai nghiệm  \(x_{1;2}=-1\pm\sqrt{1+m}\)

Nếu một trong hai nghiệm đó bằng 1, thì ta cso \(1^2+2.1-m=0\) hay \(m=3\)

Khi đó (1) còn có nghiệm \(x=-3\) thỏa mãn điều kiện \(x\ne1\)

Nên ta có kết luận 

* Khi \(m<-1\) phương trình vô nghiệm

* Khi \(m=3\) phương trình có 1 nghiệm \(x=-3\)

* Khi \(m\ge-1;m\ne3\) phương trình có hai nghiệm \(x=-1\pm\sqrt{1=m}\)


Các câu hỏi tương tự
Bình Trần Thị
Xem chi tiết
Nguyễn Trọng Nghĩa
Xem chi tiết
Nhók Lạnh Lùng
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
T.Hậu
Xem chi tiết
Lê Minh Phương
Xem chi tiết
Lê Thu Trang
Xem chi tiết
Min Suga
Xem chi tiết