\(x\ge-\frac{1}{2};x\ne0\)
\(\frac{1}{x}-\frac{1}{x^2}+\sqrt{2x+1}-\sqrt{x+2}=0\)
\(\Leftrightarrow\frac{x-1}{x^2}+\frac{x-1}{\sqrt{2x+1}+\sqrt{x+2}}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{x^2}+\frac{1}{\sqrt{2x+1}+\sqrt{x+2}}\right)=0\)
\(\Leftrightarrow x-1=0\) (do \(\frac{1}{x^2}+\frac{1}{\sqrt{2x+1}+\sqrt{x+2}}>0\))
\(\Rightarrow x=1\)