Lời giải:
Đặt $2^x=a; 3^{\frac{1}{x}}=b$. PT đã cho tương đương với:
\((2^x)^3+(3^{\frac{1}{x}})^3+2.2^x.3.3^{\frac{1}{x}}+2^x.3^2.3^{\frac{1}{x}}=125\)
\(\Leftrightarrow a^3+b^3+6ab+9ab=125\)
\(\Leftrightarrow a^3+b^3+15ab-125=0\)
\(\Leftrightarrow (a+b)^3-3ab(a+b)+15ab-5^3=0\)
\(\Leftrightarrow (a+b)^3-5^3-3ab(a+b-5)=0\)
\(\Leftrightarrow (a+b-5)[(a+b)^2+5(a+b)+25-3ab]=0\)
\(\Rightarrow \left[\begin{matrix} a+b-5=0\\ a^2+b^2+25-2ab+5a+5b=0\end{matrix}\right.\)
Nếu $a+b-5=0$
$\Leftrightarrow 2^x+3^{\frac{1}{x}}=5$
Hiển nhiên PT có nghiệm $x=1$. Còn 1 nghiệm nữa là nghiệm vô tỷ. Mình nghĩ với kiến thức lớp 9 mà không có thêm điều kiện ràng buộc của $x$ thì rất khó để giải.
Nếu $a^2+b^2+25-2ab+5a+5b=0$
$\Leftrightarrow \frac{(a-b)^2+(a+5)^2+(b+5)^2}{2}=0$
$\Rightarrow (a-b)^2=(a+5)^2=(b+5)^2=0$
$\Rightarrow a=b=-5$ (vô lý vì $2^x, 3^{\frac{1}{x}}$ luôn dương với mọi $x$)
@Nguyễn Việt Lâm bài pt này em giải mãi mak ch ra, nên anh giúp em nhé !!!
Nguyễn Việt Lâm
Akai Haruma giúp em bài này với ạ