\(a,\left|2x+2\right|+10=2x\)
*TH1 : \(\left|2x+2\right|=2x+2\Leftrightarrow2x+2>0\Leftrightarrow x>-1\)
\(\Rightarrow2x+2+10=2x\)
\(\Leftrightarrow2x-2x=-10-2\)
\(\Leftrightarrow0x=-12\left(vô\cdot lý\right)\)
*TH2 :\(\left|2x+2\right|=-2x-2\Leftrightarrow-2x-2< 0\Leftrightarrow x>-1\)
\(\Rightarrow-2x-2+10=2x\)
\(\Leftrightarrow-2x-2x=-10+2\)
\(\Leftrightarrow-4x=-8\)
\(\Leftrightarrow x=\dfrac{1}{2}\left(nhận\right)\)
Vậy \(S=\left\{\dfrac{1}{2}\right\}\)
\(b,\left|x-6\right|=\left|3-2x\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=3-2x\\x-6=-3+2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{-3;3\right\}\)