Giải bất phương trình sau :
\(\left(\sqrt{5}+2\right)^{x+1}\ge\left(\sqrt{5}+2\right)^{x-3}\)
Giải các phương trình logarit sau :
a) \(\frac{1}{4+\log_3x}+\frac{1}{2-\log_3x}=1\)
b) \(-\ln^3x+2\ln x=2-\ln x\)
c)\(x^{lg^2x^2-3lgx-\frac{9}{2}}=10^{-2lgx}\)
d) \(\log_2\sqrt{\left|x\right|}-4\sqrt{\log_4\left|x\right|}-5=0\)
Giải bất phương trình :
\(\log_2\left(\sqrt{x^2-5x+5}+1\right)+\log_3\left(x^2-5x+7\right)\le2\)
Giải phương trình sau :
\(\sqrt{3+\log_2\left(x^2-4x+5\right)}+2\sqrt{5-\log_2\left(x^2-4x+5\right)}\)
Cho phương trình: \(\left(x^2-1\right).log^2\left(x^2+1\right)-m\sqrt{2\left(x^2-1\right)}.log\left(x^2+1\right)+m+4=0\). Có bao nhiêu giá trị nguyên của tham số m thuộc [-10;10] để phương trình đã cho có 2 nghiệm phân biệt thỏa mãn \(1\le|x|\le3\)
Giải phương trình:
a) \(2log_2x+log_{\dfrac{1}{2}}\left(1-\sqrt{x}\right)=\dfrac{1}{2}log_{\sqrt{2}}\left(x-2\sqrt{x}+2\right)\)
b) \(log_3\dfrac{x^2-2x+1}{x}+x^2+1=3x\)
Giúp mình hai câu này với ạ.
Giải phương trình :
\(\log_{\sqrt{2}}\left(x-3\right)^2-8\log_2\sqrt{2x-1}=4\)
Giải phương trình
\(x^2+4x=\left(x+2\right)\sqrt{x^2-2x+4}\)
Giải bất phương trình:
\(a,\log_{0,1},1\left(x^2+x-2\right)>\log_{0,1}\left(x+3\right)\)
\(b,\log_{\dfrac{1}{3}}\left(x^2-6x+5\right)+2\log_3\left(2-x\right)\ge0\)