ĐKXĐ: \(x\ge-1\)
\(\Leftrightarrow x^2-x+2\sqrt{\left(x+1\right)\left(x^2-x+1\right)}-2\sqrt{x+1}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{x^2-x+1}=b>0\end{matrix}\right.\)
\(b^2-1+2ab-2a=0\)
\(\Leftrightarrow b\left(2a+1\right)-\left(2a+1\right)=0\)
\(\Leftrightarrow\left(b-1\right)\left(2a+1\right)=0\)
\(\Leftrightarrow b=1\Rightarrow\sqrt{x^2-x+1}=1\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)