\(\left|x+1\right|=\left|x\left(x+1\right)\right|\)
+) Xét \(x\ge-1\) ta có:
\(x+1=x\left(x+1\right)\)
\(\Rightarrow x+1=x^2+x\)
\(\Rightarrow x^2=1\)
\(\Rightarrow x=\pm1\) ( t/m )
+) Xét \(x< -1\) ta có:
\(-\left(x+1\right)=x\left(x+1\right)\)
\(\Rightarrow x\left(x+1\right)+\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)^2=0\)
\(\Rightarrow x+1=0\Rightarrow x=-1\) ( loại )
Vậy \(x\in\left\{1;-1\right\}\)
|x+1|= |x(x+1)|
<=> x+1 = x(x+1) hoac x+1 = - x(x+1)
<=> x+1 = x2+x hoac x+1 = - x2-x
<=> x - x2 - x = -1 hoac x + x2 + x + 1 = 0
<=> x2=1 hoac x2+2x+1=0
<=> x=1 hoac x= -1 hoac (x+1)2=0
<=> x=1 hoac x= -1
S= { -1 ; 1 }