\(\dfrac{x-1}{x-2}+\dfrac{x+3}{x-4}=\dfrac{2}{-x^2+6x-8}\left(đk:x\ne2,x\ne4\right)\Leftrightarrow\dfrac{\left(x-1\right)\left(x-4\right)+\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x-4\right)}=\dfrac{-2}{x^2-6x+8}\Leftrightarrow\dfrac{2x^2-4x-2}{x^2-6x+8}=\dfrac{-2}{x^2-6x+8}\Leftrightarrow2x^2-4x-2=-2\Leftrightarrow2x^2-4x=0\Leftrightarrow2x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)\(\Leftrightarrow x=0\)( do x≠2)
2)Biện luận PT
`m(mx-1)=x+1`
`<=>m^2x-m=x+1`
`<=>x(m^2-1)=m+1`
PT vô nghiệm `<=>{(m^2-1=0),(m+1\ne0):}<=>m=1`
PT vô số nghiệm `<=>{(m^2-1=0),(m+1=0):}<=>m=-1`
PT có nghiệm duy nhất `m^2-1\ne0<=>m^2\ne1<=>m\ne+-1=>x=(m+1)/(m^2-1)=1/(m-1)`
\(m\left(mx-1\right)=x+1\Leftrightarrow m^2x-x-m-1=0\Leftrightarrow x\left(m-1\right)\left(m+1\right)-\left(m+1\right)=0\Leftrightarrow\left(m+1\right)\left[x\left(m-1\right)-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m-1=0\\m^2x-m=x+1\end{matrix}\right.\\\left\{{}\begin{matrix}x\left(m-1\right)-1=0\\m^2x-m=x+1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m=1\\x-1=x+1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\m=2\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\m=2\end{matrix}\right.\)(do x-1≠x+1)
1: Ta có: \(\dfrac{x-1}{x-2}+\dfrac{x+3}{x-4}=\dfrac{2}{-x^2+6x-8}\)
Suy ra: \(x^2-5x+4+x^2+x-6=-2\)
\(\Leftrightarrow2x^2-4x=0\)
\(\Leftrightarrow2x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=2\left(loại\right)\end{matrix}\right.\)