Lời giải:
Vì \(3x-8=\sqrt{x^2+16}-\sqrt{x^2+7}>0\Rightarrow x>\frac{8}{3}\Rightarrow 3x-4>0\)
PT \(\Leftrightarrow 3x-8+\sqrt{x^2+7}-\sqrt{x^2+16}=0\)
\(\Leftrightarrow [(3x-4)-\sqrt{x^2+16}]+(\sqrt{x^2+7}-4)=0\)
\(\Leftrightarrow \frac{(3x-4)^2-(x^2+16)}{3x-4+\sqrt{x^2+16}}+\frac{x^2+7-16}{\sqrt{x^2+7}+4}=0\) (liên hợp)
\(\Leftrightarrow \frac{8x^2-24x}{3x-4+\sqrt{x^2+16}}+\frac{x^2-9}{\sqrt{x^2+7}+4}=0\)
\(\Leftrightarrow (x-3)\left(\frac{8x}{3x-4+\sqrt{x^2+16}}+\frac{x+3}{\sqrt{x^2+7}+4}\right)=0\)
Với mọi \(x>\frac{8}{3}\) ta dễ thấy \(\frac{8x}{3x-4+\sqrt{x^2+16}}+\frac{x+3}{\sqrt{x^2+7}+4}>0\)
Do đó $x-3=0$ hay $x=3$ là nghiệm duy nhất của pt.