Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bolbbalgan4

Giải phương trình: \(\sqrt{x^2+16}-\sqrt{x^2+7}=3x-8\).

Akai Haruma
27 tháng 1 2019 lúc 16:54

Lời giải:

\(3x-8=\sqrt{x^2+16}-\sqrt{x^2+7}>0\Rightarrow x>\frac{8}{3}\Rightarrow 3x-4>0\)

PT \(\Leftrightarrow 3x-8+\sqrt{x^2+7}-\sqrt{x^2+16}=0\)

\(\Leftrightarrow [(3x-4)-\sqrt{x^2+16}]+(\sqrt{x^2+7}-4)=0\)

\(\Leftrightarrow \frac{(3x-4)^2-(x^2+16)}{3x-4+\sqrt{x^2+16}}+\frac{x^2+7-16}{\sqrt{x^2+7}+4}=0\) (liên hợp)

\(\Leftrightarrow \frac{8x^2-24x}{3x-4+\sqrt{x^2+16}}+\frac{x^2-9}{\sqrt{x^2+7}+4}=0\)

\(\Leftrightarrow (x-3)\left(\frac{8x}{3x-4+\sqrt{x^2+16}}+\frac{x+3}{\sqrt{x^2+7}+4}\right)=0\)

Với mọi \(x>\frac{8}{3}\) ta dễ thấy \(\frac{8x}{3x-4+\sqrt{x^2+16}}+\frac{x+3}{\sqrt{x^2+7}+4}>0\)

Do đó $x-3=0$ hay $x=3$ là nghiệm duy nhất của pt.


Các câu hỏi tương tự
Trần Việt Khoa
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Hoàng Minh
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
Chí Lê Toàn Phùng
Xem chi tiết
Kim Trí Ngân
Xem chi tiết
Big City Boy
Xem chi tiết
Kim Trí Ngân
Xem chi tiết