Với mọi x thuộc tập xác định, theo bất đẳng thức Bunhiacopxki, ta có
\(\sqrt{x-2}+\sqrt{4-x}=1\sqrt{x-2}+1\sqrt{4-x\le\sqrt{\left(1^2+1^2\right)\left(x-2+4-x\right)}=2}\)
còn
\(x^2-6x+11=\left(x-3\right)^2+2\ge2\)
do đó
\(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\) \(\Leftrightarrow\) \(\begin{cases}\sqrt{x-2}+\sqrt{4-x}=2\\\left(x-3\right)^2+2=2\end{cases}\)
\(\Leftrightarrow\) \(x=3\)
Vậy phương trình đã cho có nghiệm duy nhất \(x=3\)