ĐK: \(x\ge0;x\le-1\)
\(pt\Leftrightarrow x^2+x-6=\sqrt{x^2+x}-4\)
\(\Leftrightarrow x^2+x-\sqrt{x^2+x}-2=0\)
\(\Leftrightarrow\left(\sqrt{x^2+x}+1\right)\left(\sqrt{x^2+x}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x}=-1\left(l\right)\\\sqrt{x^2+x}=2\end{matrix}\right.\)
\(\sqrt{x^2+x}=2\)
\(\Leftrightarrow x^2+x-4=0\)
\(\Leftrightarrow x=\dfrac{-1\pm\sqrt{17}}{2}\left(tm\right)\)