Giải pt:
\(\dfrac{x^2+4x+6}{x+2}+\dfrac{x^2+16x+72}{x+8}=\dfrac{x^2+8x+20}{x+4}+\dfrac{x^2+12x+42}{x+6}\)
(x2 +4x+6 / x+2) + ( x2 + 16x + 72/x+8) = ( x2 + 8x + 20/x+4) + ( x2 + 12x + 42/ x+6)
bài 1 giải phương trình
\(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
\(\frac{3}{5x-1}+\frac{3}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)
\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{8+6x}{16x^2-1}\)
\(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
\(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}\)
\(\frac{x+4}{x^2-3x+2}-\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)
1,Giải PT
a,\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{3+6x}{16x^2-1}\)
b,\(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
c,\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
Giải các phương trình
a) \(\frac{15x}{x^2+3x-4}=\frac{12}{x+4}+\frac{4}{x-1}+1\)
b) \(x\left(x-2\right)\left(x-1\right)\left(x+1\right)=24\)
c) \(\frac{x^2-2x+2}{x-1}+\frac{x^2-8x+20}{x-4}=\frac{x^2-4x+6}{x-2}+\frac{x^2-6x+12}{x-3}\)
Giải các phương trình sau :
a, \(\left(6x+8\right)\left(6x+6\right)\left(6x+7\right)^2=72\)
b,\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
Bài 4: Giải các phương trình sau
a) 4(x+5)(x+6)(x+10)(x+12)=\(3x^2\)
b) \(\frac{1}{x^2-3x+3}+\frac{2}{x^2-3x+4}=\frac{6}{x^2-3x+5}\)
c) \(\frac{4x}{4x^2-8x+7}+\frac{3x}{4x^2-10x+7}=1\)
d) \(\dfrac{2x}{2x^2-5x+3}+\dfrac{13x}{2x^2+x+3}=6\)
bài 2 : thực hiện phép tính
a. \(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}\)
b. \(\frac{12x}{5y^3}.\frac{15y^4}{8x^3}\)
c.\(\frac{4y^2}{11x^4}.\left(-\frac{3x^2}{8y}\right)\)
d.\(\frac{x^{2-4}}{3x+12}.\frac{x+4}{2x-4}\)
e.\(\frac{5x+10}{4x-8}.\frac{4-2x}{x+2}\)
f.\(\frac{x^2-36}{2x+10}.\frac{3}{6-x}\)
g.\(\frac{x^2-9y^2}{x^2y^2}.\frac{3xy}{2x-6}\)
h.\(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}\)
i.\(\frac{a^2+ab}{b-a}:\frac{a+b}{2a^2-2b^2}\)
j.\(\frac{x+y}{y-x}:\frac{x^2+xy}{3x^2-3y^2}\)
k.\(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}\)