\(\Leftrightarrow\frac{\cos^2x-4\sin^2x.\cos^2x}{4\cos^2x}=\frac{1}{2}\left(\cos\frac{\pi}{3}-\cos2x\right)\)
\(\Leftrightarrow1-4\sin^2x=2\left(\frac{1}{2}-\cos2x\right)\)
\(\Leftrightarrow1-4\sin^2x=1-2\cos2x\)
\(\Leftrightarrow2\sin^2x=\cos2x\)
\(\Leftrightarrow1-\cos2x=\cos2x\)
\(\Leftrightarrow\cos2x=\frac{1}{2}\Leftrightarrow x=\pm\frac{\pi}{6}+k\pi,k\in Z\) thỏa mãn điều kiện