Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
patrick9

\(\cos\left(x+\frac{\pi}{3}\right)+\cos x=\frac{3}{2}-4\sin\left(\frac{x}{2}\right)\cdot\sin\left(\frac{x}{2}+\frac{\pi}{6}\right)\)

Nguyễn Việt Lâm
19 tháng 8 2020 lúc 12:15

\(\Leftrightarrow1-2sin^2\left(\frac{x}{2}+\frac{\pi}{6}\right)+1-2sin^2\frac{x}{2}=\frac{3}{2}-4sin\left(\frac{x}{2}\right)sin\left(\frac{x}{2}+\frac{\pi}{6}\right)\)

\(\Leftrightarrow\left[sin\left(\frac{x}{2}\right)-sin\left(\frac{x}{2}+\frac{\pi}{6}\right)\right]^2=\frac{1}{4}\)

\(\Leftrightarrow4cos^2\left(\frac{x}{2}+\frac{\pi}{12}\right).sin^2\left(\frac{\pi}{12}\right)=\frac{1}{4}\)

\(\Leftrightarrow cos^2\left(\frac{x}{2}+\frac{\pi}{12}\right)=\frac{1}{16sin^2\left(\frac{\pi}{12}\right)}=\frac{2+\sqrt{3}}{4}\)

\(\Leftrightarrow1+cos\left(x+\frac{\pi}{6}\right)=\frac{2+\sqrt{3}}{2}\)

\(\Leftrightarrow cos\left(x+\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}\)

\(\Leftrightarrow...\)


Các câu hỏi tương tự
Quỳnh Nguyễn Thị Ngọc
Xem chi tiết
Quỳnh Nguyễn Thị Ngọc
Xem chi tiết
Su Bi
Xem chi tiết
Julian Edward
Xem chi tiết
Phụng Nguyễn Thị
Xem chi tiết
Nguyễn Khánh Ly
Xem chi tiết
Đào Thành Lộc
Xem chi tiết
Phạm Lợi
Xem chi tiết
duyên lương
Xem chi tiết