\(\Leftrightarrow8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)\left[\left(x^2+\dfrac{1}{x^2}\right)-\left(x+\dfrac{1}{x}\right)^2\right]=\left(x+4\right)^2\)
\(\Leftrightarrow8\left(x+\dfrac{1}{x}\right)^2+4.\left(x^2+\dfrac{1}{x^2}\right)\left[-2\right]=\left(x+4\right)^2\)
\(\Leftrightarrow8\left[\left(x+\dfrac{1}{x}\right)^2-\left(x^2+\dfrac{1}{x^2}\right)\right]=\left(x+4\right)^2\)
\(x\ne0\Leftrightarrow\left(x+4\right)^2=16\Rightarrow\left[{}\begin{matrix}x+4=4;x=0\left(l\right)\\x+4=-4x;x=-8\end{matrix}\right.\)
x+1/x =a
x^2 +1/x^2 =a-2
<=> 8a^2 +4(a^2 -2)^2 -4(a^2 -2) a^2 =(x+4)^2
<=> 8a^2 +4 a^4 -16a^2 +16-4 a^4 + 8 a^2 =(x+4)^2
<=> 8a^2 +4 a^4 -16a^2 +16-4 a^4 +8 a^2 =(x+4)^2
<=> 16 =(x+4)^2
x+4 =4 => x =8
x+4 =-4 => x=0
x khac 0
a =x+1/x => |a| >=2
x^2 +1/x^2 =a-2
<=> 8a^2 +4(a^2 -2)^2 -4(a^2 -2) a^2 =(x+4)^2
<=> 8a^2 +4 a^4 -16a^2 +16-4 a^4 + 8 a^2 =(x+4)^2
<=> 8a^2 +4 a^4 -16a^2 +16-4 a^4 +8 a^2 =(x+4)^2
<=> 16 =(x+4)^2
x+4 =4 => x =8