Giải phương trình
a,\(\sqrt{x^2-2x+1}=2x\)
b,\(\sqrt{25x-125}-3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=6\)
Câu 1
a) Tính \(2\sqrt{6}-\sqrt{49}\)
b) CMR \(\dfrac{1}{3+\sqrt{2}}+\dfrac{1}{3-\sqrt{2}}=\dfrac{6}{7}\)
c) Rút gọn biểu thức \(B=\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)với...a\ge0;a\ne1\)
Câu 2Cho phương trình \(x^2-2\left(m-3\right)x-1=0\)
Tìm m để phương trình có nghiệm \(x_1;x_2\)mà biểu thức \(A=x^2_1-x_1x_2+x^2_2\)đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó
Cho phương trình x + \(2\sqrt{x-1}\) - m2 + 6m - 11 = 0, m là tham số. Chứng minh rằng phương trình có nghiệm với mọi giá trị của m
\(B=\frac{15}{\sqrt{6}+1}-\frac{6}{\sqrt{6}-2}\)
\(C=\sqrt{11+4\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
Rút gọn biểu thức
Rút gọn biểu thức sau
B = 5(\(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}-\sqrt{\dfrac{5}{2}}\) ) 2 + 2 ( \(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}-\sqrt{\dfrac{3}{2}}\)) 2
Đề 3
Câu 1
a) Tính \(2\sqrt{9}+3\sqrt{16}\)
b) Giải phương trình 3x-15=0
c) Giải bất phương trình: \(x^2+\left(x-1\right)\left(3-x\right)>0\)
Câu 2
Cho pt: \(x^2+4\left(m-1\right)x-m^2-8=0\left(1\right)\)
a) Giải pt (1) khi m=2
b) Gọi \(x_1:x_2\)là 2 nghiệm của phương trình (1).Tìm giá trị lớn nhất của biểu thức \(Q=x_1+x_2+x_1\times x_2\)
Câu 3 Cho tam giác ABC vuông cân tại A, điểm M bất kỳ thuộc cạnh AC (M không trùng A;C) Đường thẳng qua C vuông góc với đường thẳng BM tại H, CH cắt tia BA tại I. Gọi K là giao điểm của IM và BC. CM
a) Tứ giác BKHI nội tiếp đường tròn
b) Chứng minh 2 đoạn thẳng BM và CI = nhau
c) CMR khi M chuyển động trên đoạn AC( M không trùng A và C) thì điểm H luôn chạy trên 1 cung tròn cố định
Giải bất pt:
\(\dfrac{2x}{5}+\dfrac{3-2x}{3}\ge\dfrac{3x+2}{2}\)
Rút gọn biểu thức sau
P= (\(\dfrac{1}{x-\sqrt{x}}\) + \(\dfrac{1}{\sqrt{x}-1}\)) : \(\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)
Giải pt:
\(\left(x+3\right)\sqrt{\left(4-x\right)\left(12+x\right)}=28-x\)