giai he phuong trinh \(\left\{{}\begin{matrix}x^2+y^2+xy=1\\x^3+y^3=x+3y\end{matrix}\right.\)
giai phuong trinh\(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)
Giải các phuong trình sau
a) \(\sqrt{1-6x+9x^2}\) =5
b) \(\sqrt{x^2-4x+4}\) =7
c) \(\sqrt{25-10x+x^2}\) = 7-2x
d)\(\sqrt{x^2+6x+9}\) = 3x-1
√x^2-6x+9=3-x
x^2-1/2x+1/16=x+3/2
√x-2√x-1=√x-1-1
√9-4√5-√5=-2
Giai pt
\(\left(\sqrt{2x+3}+2\right).\left(\sqrt{x+6}-\sqrt{x+1}\right)=5\)
1.\(\sqrt{-4x^2+25}=x\)
2.\(\sqrt{3x^2-4x+3}=1-2x\)
3. \(\sqrt{4\left(1-x\right)^2}-\sqrt{3}=0\)
4.\(\dfrac{3\sqrt{x+5}}{\sqrt{ }x-1}< 0\)
5. \(\dfrac{3\sqrt{x-5}}{\sqrt{x+1}}\ge0\)
12) √15-6√6 + √35-12√6
13) √46-6√5 - √29-12√5
14) (2-√3) √7+4√3
15) (4+√5)(√10-√6) √4-√15
16) √25-16 -6√1/3 - 2/1+√3
17) (1+√2+√3) (1+√2-√3)
Giải các phương trình sau:
a) \(\sqrt{x^2-4+4}=2-x\)
b) \(\sqrt{4x-8}-\dfrac{1}{5}\sqrt{25x-50}=3\sqrt{x-2}-1\)
c) \(\sqrt{x-1}+\sqrt{9x-9}-\sqrt{4x-4}=4\)
d) \(\dfrac{1}{2}\sqrt{x-2}-4\sqrt{\dfrac{4x-8}{9}}+\sqrt{9x-18}-5=0\)
e)\(\sqrt{49-28x+4x^2}-5=0\)
f) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
g) x2 - 4x - 2\(\sqrt{2x-5}+5=0\)
h)\(\sqrt{3x-2}=\sqrt{x+1}\)
i) x + y + z + 8 = \(2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
k) \(\sqrt{x^2-3x}-\sqrt{x-3}=0\)
l)\(\sqrt{x^2-4}+\sqrt{x-2}=0\)
m) \(4\sqrt{x+1}=x^2-5x+14\)
n) \(\sqrt{x^2-6x+9}-\sqrt{4x^2+4x+1}=0\)
Rút gọn :
\(\dfrac{\sqrt{x+\sqrt{4\left(x-1\right)}}-\sqrt{x-\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(\sqrt{x-1}-\dfrac{1}{\sqrt{x-1}}\right)\)
b)\(\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)
c)\(\left(\sqrt{5}+1\right)\left(\sqrt{7}+1\right)\left(\sqrt{35}+1\right)\left(34-4\sqrt{7}-6\sqrt{5}\right)\)
d) \(\left(\sqrt{7}+1\right)\left(2\sqrt{2}-1\right)\left(2\sqrt{14}-1\right)\left(55+12\sqrt{2}-7\sqrt{7}\right)\)
e)\(\left(3\sqrt{2}+1\right)\left(2\sqrt{3}+1\right)\left(6\sqrt{6}+1\right)\left(215-34\sqrt{3}-33\sqrt{2}\right)\)