1. Giải các hpt sau:
a, \(\left\{{}\begin{matrix}x-y=4\\3x+4y=19\end{matrix}\right.\) b, \(\left\{{}\begin{matrix}x-\sqrt{3y}=\sqrt{3}\\\sqrt{3x}+y=7\end{matrix}\right.\)
2. Giải các hpt sau:
a, \(\left\{{}\begin{matrix}2-\left(x-y\right)-3\left(x+y\right)=5\\3\left(x-y\right)+5\left(x+y\right)=-2\end{matrix}\right.\) b, \(\left\{{}\begin{matrix}\dfrac{2}{x-2}+\dfrac{2}{y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{y-1}=1\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x+y=24\\\dfrac{x}{9}+\dfrac{y}{27}=2\dfrac{8}{9}\end{matrix}\right.\) d, \(\left\{{}\begin{matrix}\sqrt{x-1}-3\sqrt{y+2}=2\\2\sqrt{x-1}+5\sqrt{y+2=15}\end{matrix}\right.\)
3. Cho hpt \(\left\{{}\begin{matrix}\left(m+1\right)x-y=3\\mx+y=m\end{matrix}\right.\)
a, Giải hpt khi m=\(\sqrt{2}\)
b, tìm giá trị của m để hpt có nghiệm duy nhất thỏa mãn: x+y>0
giải hpt: a,\(\left\{{}\begin{matrix}x^2+y^2+xy=7\\x^4+y^4+x^2y^2=21\end{matrix}\right.\) b,\(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=7\\x^2-y^2+\dfrac{1}{x^2}-\dfrac{1}{y^2}=21\end{matrix}\right.\)
giải hpt: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=-\dfrac{1}{2}\\x^2+y^2=5\end{matrix}\right.\)
giải hpt sau
a) \(\left\{{}\begin{matrix}x+y+xy=7\\x^2+y^2+xy=13\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}x^2+y^2=52\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{12}\end{matrix}\right.\)
giải hpt
\(\left\{{}\begin{matrix}\dfrac{3}{x^2+y^2-1}+\dfrac{2y}{x}=1\\x^2+y^2-\dfrac{2x}{y}=4\end{matrix}\right.\)
giải hệ phương trình
\(\left\{{}\begin{matrix}\sqrt{x-2}+\sqrt{y-3}=3\\2\sqrt{x-2}-3\sqrt{y-3}=-4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{3x}{x+1}+\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=4\end{matrix}\right.\)
Giải các hệ phương trình:
a) \(\left\{{}\begin{matrix}\left(x+3\right)\left(y-5\right)=xy\\\left(x-2\right)\left(y+5\right)=xy\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{4}\\\dfrac{1}{6x}+\dfrac{1}{5y}=\dfrac{2}{15}\end{matrix}\right.\)
giải hpt:\(\left\{{}\begin{matrix}\dfrac{4}{x+y}+3\sqrt{4\text{x}-8}=14\\\dfrac{5-x-y}{x+y}-2\sqrt{x-2}=\dfrac{-5}{2}\end{matrix}\right.\)
Giải hpt
\(\left\{{}\begin{matrix}\dfrac{x}{x^2-y}+\dfrac{5y}{x-y^2}=4\\5x+y+\dfrac{x^2-5y^2}{xy}=5\end{matrix}\right.\)