Nhận thấy \(x=0\) không phải nghiệm, hệ tương đương:
\(\left\{{}\begin{matrix}21y-20=\dfrac{1}{x^3}\\y^3+20=\dfrac{21}{x}\end{matrix}\right.\)
Cộng vế với vế:
\(y^3+21y=\dfrac{1}{x^3}+\dfrac{21}{x}\)
\(\Leftrightarrow y^3-\dfrac{1}{x^3}+21\left(y-\dfrac{1}{x}\right)=0\)
\(\Leftrightarrow\left(y-\dfrac{1}{x}\right)\left(y^2+\dfrac{y}{x}+\dfrac{1}{x^2}\right)+21\left(y-\dfrac{1}{x}\right)=0\)
\(\Leftrightarrow\left(y-\dfrac{1}{x}\right)\left(y^2+\dfrac{y}{x}+\dfrac{1}{x^2}+21\right)=0\)
\(\Leftrightarrow y=\dfrac{1}{x}\)
\(\Leftrightarrow...\)