Vậy nghiệm của hệ phương trình (0; 0), (9; 4), (4; 9)
Vậy nghiệm của hệ phương trình (0; 0), (9; 4), (4; 9)
Giải các hệ phương trình sau:a) \(\left\{{}\begin{matrix}\left(2x-y\right)^2-6x+3y=0\\x+2y=0\end{matrix}\right.\);b) \(\left\{{}\begin{matrix}\sqrt{\dfrac{2x-y}{x+y}}+\sqrt{\dfrac{x+y}{2x-y}}=2\\3x+y=14\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x\sqrt{y}+y\sqrt{x}=30\\x\sqrt{x}+y\sqrt{y}=35\end{matrix}\right.\)
Giải hệ phương trình:
\(\left\{{}\begin{matrix}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{matrix}\right.\)
giải hệ phương trình sau\(\left\{{}\begin{matrix}\left(\sqrt{2}-1\right)x+2y=1\\4x-\left(\sqrt{2}+1\right)y=3\end{matrix}\right.\)
Giải các hệ phương trình sau :
a) \(\left\{{}\begin{matrix}\sqrt{3}x-2\sqrt{2}y=7\\\sqrt{2}x+3\sqrt{3}y=-2\sqrt{6}\end{matrix}\right.\);
b) \(\left\{{}\begin{matrix}\left(\sqrt{2}+1\right)x-\left(2-\sqrt{3}\right)y=2\\\left(2+\sqrt{3}\right)x+\left(\sqrt{2}-1\right)y=2\end{matrix}\right.\).
1) Giải hệ phương trình
\(\left\{{}\begin{matrix}3x^2+xy-4x+2y=2\\x\left(x+1\right)+y\left(y+1\right)=4\end{matrix}\right.\)
2) Giải phương trình
\(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
3) Tính giá trị của biểu thức
\(A=2x^3+3x^2-4x+2\)
Với \(x=\sqrt{2+\sqrt{\dfrac{5+\sqrt{5}}{2}}}+\sqrt{2-\sqrt{\dfrac{5+\sqrt{5}}{2}}}-\sqrt{3-\sqrt{5}}-1\)
4) Cho x, y thỏa mãn:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{y+2014}+\sqrt{2015-y}-\sqrt{2014-y}\)
Chứng minh \(x=y\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{2017-y}=\sqrt{2017}\\\sqrt{2017-x}+\sqrt{y}=\sqrt{2017}\end{matrix}\right.\)
Giải các hệ phương trình sau:
a) \( \left\{{}\begin{matrix}x\sqrt{5}-\left(1+\sqrt{3}\right)y=1\\\left(1-\sqrt{3}\right)x+y\sqrt{5}=1\end{matrix}\right.;\)
b) \(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=\sqrt{2}\\\dfrac{x}{x+1}+\dfrac{3y}{y+1}=-1\end{matrix}\right..\)
Giải hệ phương trình\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}=12\\2\sqrt{x}+5\sqrt{y}+10\sqrt{z}=\sqrt{xyz}\end{matrix}\right.\)