Trừ pt trên cho dưới:
\(x^3-y^3=2\left(y-x\right)\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+2\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+2\right)=0\Leftrightarrow\left(x-y\right)\left[\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+2\right]=0\)
\(\Rightarrow x=y\)
Thay vào pt trên:
\(x^3+1=2x\Leftrightarrow x^3-2x+1=0\Leftrightarrow\left(x-1\right)\left(x^2+x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=y=1\\x=y=\frac{-1-\sqrt{5}}{2}\\x=y=\frac{-1+\sqrt{5}}{2}\end{matrix}\right.\)