Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix}
(x+y)^2-3xy=3\\
z^2=-(xy+1)\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
(x+y)^2=3(xy+1)\\
z^2=-(xy+1)\end{matrix}\right.\)
\(\Rightarrow (x+y)^2=-3z^2\)
Vì $(x+y)^2\geq 0; -3z^2\leq 0$ với mọi $x,y,z$
Do đó để $(x+y)^2=-3z^2$ thì $(x+y)=z=0$
Khi $x+y=0\Rightarrow xy=-1$
$\Rightarrow (x,y)=(-1,1); (1,-1)$
Vậy $(x,y,z)=(-1,1,0); (1,-1,0)$