Đề:
Cho \(x^3+y^3+z^3=3xyz\) và \(x+y+z\ne0\)
Tính \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
Giải:
\(x^3+y^3+z^3=3xyz\)
\(x^3+y^3+z^3-3xyz=0\)
\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)
\(x^2+y^2+z^2-xy-xz-yz=0\left(x+y+z\ne0\right)\)
\(2\times\left(x^2+y^2+z^2-xy-xz-yz\right)=2\times0\)
\(2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)
\(x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2=0\)
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\left[\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)
\(\left[\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
\(x=y=z\)
Thay \(y=x\) và \(z=x\) vào biểu thức, ta có:
\(\left(1+\frac{x}{x}\right)\left(1+\frac{x}{x}\right)\left(1+\frac{x}{x}\right)\)
\(=\left(1+1\right)^3\)
\(=2^3\)
\(=8\)
ĐS: 8
Lan Anh <3
rất cần có những bài như thế này để mn tham khảo, cám ơn bn