tìm x+y =.... từ pt (1) ** sẽ có 2 kết quả**
tìm x-y =.... từ pt (2) ** sẽ có 2 kq**
xét 4 trường hợp với từng cặp x+y và x-y
nói thế có rõ ko?
tìm x+y =.... từ pt (1) ** sẽ có 2 kết quả**
tìm x-y =.... từ pt (2) ** sẽ có 2 kq**
xét 4 trường hợp với từng cặp x+y và x-y
nói thế có rõ ko?
giải hệ
a,\(\left\{{}\begin{matrix}\left(x+y\right)\left(x^2+y^2\right)=15\\\left(x-y\right)\left(x^2-y^2\right)=3\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}x^3-y^3=9\\x^2+2y^2=x-4y\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}\left(x-y\right)\left(2x+3y\right)=12\\6\left(x-y\right)+xy\left(x-y\right)=12\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}x^2+y^2+1=2\left(x+y\right)\\y\left(2x-y\right)=\left(2y+1\right)\end{matrix}\right.\)
Giải phương trịnh, hệ phương trình sau:
a) \(\left\{{}\begin{matrix}x^2+y^2=1\\x^2-x=y^2-y\end{matrix}\right.\)
b) \(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
Giải hệ phương trình \(\left\{{}\begin{matrix}6x+\dfrac{3}{x+y}=13\\12\left(x^2+xy+y^2\right)+\dfrac{9}{\left(x+y\right)^2}=85\end{matrix}\right.\)
giải hệ:
a) \(\left\{{}\begin{matrix}\sqrt{x+3y}+\sqrt{x+y}=2\\\sqrt{x+y}+y-x=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\left(x-\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=2\\2x^2y+xy^2-4xy=2x-y\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}2x^2+xy=y^2-3y+2\\x^2-y^2=3\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}x^2+y^2+z^2+2xy-xz-zy=3\\x^2+y^2-2xy-xz+zy=-1\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}x^2-y^2+5x-y+6=0\\x^2+\left(x-y\right)^2=2+\sqrt{6x+7}+2\sqrt{x+y+1}\end{matrix}\right.\)
giải hệ phương trình: \(\left\{{}\begin{matrix}\left(x-1\right).y^2+x+y=3\\\left(y-2\right).x^2+y=x+1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x\sqrt{5}-\left(1+\sqrt{3}\right)y=1\\\left(1+\sqrt{3}\right)x+y\sqrt{5}=1\end{matrix}\right.\)giải hệ phương trình
Giải hệ phương trình
\(\left\{{}\begin{matrix}x+y=4\\xy^2+y\left(x+y\right)=4\left(y+2\right)\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}x^2+xy+y^2=3\\x^3+3\left(y-x\right)=1\end{matrix}\right.\)
1. \(\left\{{}\begin{matrix}x+xy+y=11\\x^2+y^2-xy-2\left(x+y\right)=-31\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}xy-x+y=-3\\x^2+y^2-x+y+xy=6\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}x^2+4y^2=8\\x+2y=4\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}2+6y=\frac{x}{y}-\sqrt{x-2y}\\\sqrt{x+\sqrt{x-2y}}=x+3y-2\end{matrix}\right.\)