giải hệ
a,\(\left\{{}\begin{matrix}\left(x+y\right)\left(x^2+y^2\right)=15\\\left(x-y\right)\left(x^2-y^2\right)=3\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}x^3-y^3=9\\x^2+2y^2=x-4y\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}\left(x-y\right)\left(2x+3y\right)=12\\6\left(x-y\right)+xy\left(x-y\right)=12\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}x^2+y^2+1=2\left(x+y\right)\\y\left(2x-y\right)=\left(2y+1\right)\end{matrix}\right.\)
Câu 1:
\(\left\{{}\begin{matrix}\left(x+y\right)\left(x^2+y^2\right)=15\\\left(x+y\right)\left(x-y\right)^2=3\end{matrix}\right.\)
\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2\right)=5\left(x+y\right)\left(x-y\right)^2\)
\(\Leftrightarrow x^2+y^2=5\left(x-y\right)^2\)
\(\Leftrightarrow2x^2-5xy+2y^2=0\)
\(\Leftrightarrow\left(2x-y\right)\left(x-2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2x\\x=2y\end{matrix}\right.\)
TH1: \(y=2x\Rightarrow3x\left(x^2+4x^2\right)=15\Leftrightarrow x^3=1\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
TH2: \(x=2y\Rightarrow3y\left(4y^2+y^2\right)=15\Rightarrow y^3=1\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Câu 2:
\(\left\{{}\begin{matrix}x^3-y^3=9\\3x^2+6y^2=3x-12y\end{matrix}\right.\)
\(\Leftrightarrow x^3-y^3-3x^2-6y^2=9-3x+12y\)
\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)
\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)
\(\Leftrightarrow x-1=y+2\Rightarrow x=y+3\)
\(\Rightarrow\left(y+3\right)^2+2y^2=y+3-4y\)
\(\Leftrightarrow y^2+3y+2=0\Rightarrow\left[{}\begin{matrix}y=-1\Rightarrow x=2\\y=-2\Rightarrow x=1\end{matrix}\right.\)
Câu 3:
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(2x+3y\right)=12\\\left(x-y\right)\left(xy+6\right)=12\end{matrix}\right.\)
\(\Leftrightarrow\left(x-y\right)\left(2x+3y\right)=\left(x-y\right)\left(xy+6\right)\)
\(\Leftrightarrow2x+3y=xy+6\)
\(\Leftrightarrow x\left(y-2\right)-3\left(y-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(y-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
TH1: \(x=3\Rightarrow\left(3-y\right)\left(3y+6\right)=12\)
\(\Leftrightarrow y^2-y-2=0\Rightarrow\left[{}\begin{matrix}y=-1\\y=2\end{matrix}\right.\)
TH2: \(y=2\Rightarrow\left(x-2\right)\left(2x+6\right)=12\)
\(\Leftrightarrow x^2+x-12=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)
Câu 4:
Cộng vế với vế:
\(x^2+y^2+1+2xy-y^2=2x+2y+2y+1\)
\(\Leftrightarrow x^2+y^2+1+2xy-2x-2y=y^2+2y+1\)
\(\Leftrightarrow\left(x+y-1\right)^2=\left(y+1\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y-1=y+1\\x+y-1=-y-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2y\end{matrix}\right.\)
TH1: \(x=2\Rightarrow y^2+5=2\left(y+2\right)\Leftrightarrow y^2-2y+1=0\Rightarrow y=1\)
TH2: \(x=-2y\)
\(\Rightarrow5y^2+1=2.\left(-y\right)\Leftrightarrow5y^2+2y+1=0\) (vô nghiệm)
Bộ lời giải chi tiết trong app bạn dùng thử xem! https://giaingay.com.vn/downapp.html