cho \(x;y>\dfrac{\sqrt{5}-1}{2}\) thỏa mãn \(x+y=xy\)
tìm min\(\dfrac{1}{x^2+x-1}+\dfrac{1}{y^2+y-1}\)
Giải hệ phương trình \(\left\{{}\begin{matrix}6x+\dfrac{3}{x+y}=13\\12\left(x^2+xy+y^2\right)+\dfrac{9}{\left(x+y\right)^2}=85\end{matrix}\right.\)
Các số thực x,y thoả mãn xy≠\(\sqrt[3]{2}\);-\(\sqrt[3]{2}\) CMR biểu thức sau ko phụ thuộc vào x;y:
P= (\(\dfrac{2\sqrt[3]{2}xy}{x^2y^2-\sqrt[3]{4}}+\dfrac{xy-\sqrt[3]{2}}{2xy+\sqrt[3]{2}}\) ).\(\dfrac{2xy}{xy+\sqrt[3]{2}}\) -\(\dfrac{xy}{xy-\sqrt[3]{2}}\)
Chứng minh (với những giá trị của biến làm cho biểu thức có nghĩa)
a) \(\dfrac{\left(3\sqrt{xy}-6y-2x\sqrt{y}+4y\sqrt{x}\right)\left(3\sqrt{y}+2\sqrt{xy}\right)}{y\left(\sqrt{x}-2\sqrt{y}\right)\left(y-4x\right)}=1\)
b) \(\left(\sqrt{x}-\sqrt{y}-\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}+\dfrac{2\sqrt{xy}}{x-y}\right)=\sqrt{x}+\sqrt{y}\)
So sánh:
\(A=\sqrt{\dfrac{37}{4}-\sqrt{49+12\sqrt{5}}}\) với \(B=\sqrt{5}-\dfrac{3}{2}\)
Giúp với mình sắp cần rồi
Cho ba số thực dương x, y, z thỏa mãn: xy+yz+zx=2017. chứng minh : \(\sqrt{\dfrac{yz}{x^2+2017}}+\sqrt{\dfrac{zx}{y^2+2017}}+\sqrt{\dfrac{xy}{z^2+2017}}\le\dfrac{3}{2}\)
Cho 3 số dương x,y,z thỏa mãn: xy + yz + xz = 671
\(CM:\dfrac{x}{x^2-yz+2013}+\dfrac{y}{y^2-xz+2013}+\dfrac{z}{z^2-xy+2013}\ge\dfrac{1}{x+y+z}\)
Giải hpt:
\(\left\{{}\begin{matrix}\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}=\dfrac{2}{3}\\\left(x+y\right)\left(1+\dfrac{1}{xy}\right)=6\end{matrix}\right.\)
1, \(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)
2, \(\dfrac{\left(\sqrt{x}+\sqrt{y}\right)-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}+\dfrac{y\sqrt{x}-x\sqrt{y}}{\sqrt{xy}}\)
3, \(\dfrac{9\sqrt{a}-b\sqrt{5}}{\sqrt{a}-\sqrt{5}}+\sqrt{ab}\)
4, \(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\dfrac{1-\sqrt{a}}{1-a}\right)\)
5, \(\dfrac{\sqrt{x}+1}{x-1}-\dfrac{x+2}{x\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
Cho biểu thức S=\(\left(\dfrac{\sqrt{y}}{x+\sqrt{xy}}+\dfrac{\sqrt{y}}{x-\sqrt{xy}}\right):\dfrac{2\sqrt{xy}}{x-y}\) (Với x>0,x\(\ne\)y)
a.Rút gọn S
b. Tìm x,y để S=1