\(1+\dfrac{1}{x+2}=\dfrac{12}{x^3+8}\)(ĐKXĐ: \(x\ne-2\))
<=>\(1+\dfrac{1}{x+2}=\dfrac{12}{\left(x+2\right)\left(x^2-2x+4\right)}\)
<=> x3+8+x2-2x+4=12
<=> x3+x2-2x=0
<=>x(x2+x-2)=0
<=>x[(x2-x)+(2x-2)]=0
<=>x[x(x-1)+2(x-1)]=0
<=>x(x-1)(x+2)=0(1)
Vì x>0=>x+2>0
Do đó: (1)<=>x-1=0<=>x=1
Vậy giá trị x cần tìm là x=1


