rút gọn biểu thức : A=(x3-y3-z3-3xyz):((x+y)2+(y-z)2+(x+z)2)
Cho x3 + y3 + z3 =3xyz và x+y+z khác 0 . GT của bt P=(1+x/y) (1+y/z) (1+z/x ) là ......
Cho x, y, z đôi một khác nhau thỏa mãn: \(x^3+y^3+z^3=3xyz\) và \(xyz\ne0\). Tính: \(B=\dfrac{16.\left(x+y\right)}{z}+\dfrac{3.\left(y+z\right)}{x}-\dfrac{2019.\left(x+z\right)}{y}\)
Cho x + y + z = 0. Chứng minh: \(x^3+y^3+z^3=3xyz\)
1. cho 1/a +1/b+1/c=0.Ch/m 1/a^3+1/b^3+1/c^3=3/abc
2. Phân tích đa thức sau thành nhân tử:
a) x^3+y^3+z^3-3xyz
b) x^3-y^3+z^3+3xyz
c) x^3-y^3-z^3-3xyz
Đề:
Cho \(x^3+y^3+z^3=3xyz\) và \(x+y+z\ne0\)
Tính \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)
Giải:
\(x^3+y^3+z^3=3xyz\)
\(x^3+y^3+z^3-3xyz=0\)
\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)
\(x^2+y^2+z^2-xy-xz-yz=0\left(x+y+z\ne0\right)\)
\(2\times\left(x^2+y^2+z^2-xy-xz-yz\right)=2\times0\)
\(2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)
\(x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2=0\)
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\left[\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)
\(\left[\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
\(x=y=z\)
Thay \(y=x\) và \(z=x\) vào biểu thức, ta có:
\(\left(1+\frac{x}{x}\right)\left(1+\frac{x}{x}\right)\left(1+\frac{x}{x}\right)\)
\(=\left(1+1\right)^3\)
\(=2^3\)
\(=8\)
ĐS: 8
Lan Anh <3
Cho \(x+y+z=0\)
Tính giá trị biểu thức \(B=\dfrac{x^3+y^3+z^3}{3xyz}\)
Tính A = x3 - 3xy - y3 biết x - y = 1
Cho \(A=x^3+y^3+z^3-3xyz\)
a) CMR: Nếu x+y+z=0 thì A=0
b) Điều ngược lại có đúng không?