Bạn ghi đề chính xác ra đi, câu a và câu b đó bạn
Câu a sau \(\frac{4}{cotx}\) còn dấu + nhưng không biết cộng với cái gì
Câu b biểu thức cos đầu tiên là \(cos^2\left(x+\frac{\pi}{3}\right)\) hay \(cos\left(2x+\frac{2\pi}{3}\right)\)
a) Đề thiếu
b)
PT $\Leftrightarrow 1-2\sin^2(x+\frac{\pi}{3})+4\cos (\frac{\pi}{6}-x)-\frac{5}{2}=0$
$\Leftrightarrow 1-2\sin ^2[\frac{\pi}{2}-(\frac{\pi}{6}-x)]+4\cos (\frac{\pi}{6}-x)-\frac{5}{2}=0$
$\Leftrightarrow -2\cos ^2(\frac{\pi}{6}-x)+4\cos (\frac{\pi}{6}-x)-\frac{3}{2}=0$
$\Leftrightarrow -2t^2+4t-\frac{3}{2}=0$ với $t=\cos (\frac{\pi}{6}-x)$
Đến đây bạn giải pt bậc 2 thu được $\cos (\frac{\pi}{6}-x)=\frac{1}{2}$
$\Rightarrow x=2k\pi +\frac{\pi}{2}$ hoặc $x=2k\pi -\frac{\pi}{6}$ với $k$ nguyên
c)
ĐK:.............
PT $\Leftrightarrow 1+\frac{\sin ^2x}{\cos ^2x}-1+\tan x-\sqrt{3}(\tan x+1)=0$
$\Leftrightarrow \tan ^2x+\tan x-\sqrt{3}(\tan x+1)=0$
$\Leftrightarrow \tan ^2x+(1-\sqrt{3})\tan x-\sqrt{3}=0$
$\Rightarrow \tan x=\sqrt{3}$ hoặc $\tan x=-1$
$\Rightarrow x=\pi (k-\frac{1}{4})$ hoặc $x=\pi (k+\frac{1}{3})$ với $k$ nguyên
d)
ĐK:.......
PT $\Leftrightarrow \tan x-\frac{2}{\tan x}+1=0$
$\Leftrightarrow \tan ^2x+\tan x-2=0$
$\Leftrightarrow (\tan x-1)(\tan x+2)=0$
$\Rightarrow \tan x=1$ hoặc $\tan x=-2$
$\Rightarrow x=k\pi +\frac{\pi}{4}$ hoặc $x=k\pi +\tan ^{-2}(-2)$ với $k$ nguyên.
Lê Huy Hoàng:
a) ĐK: $x\in\mathbb{R}\setminus \left\{k\pi\right\}$ với $k$ nguyên
PT $\Leftrightarrow \tan ^2x-4\tan x+5=0$
$\Leftrightarrow (\tan x-2)^2+1=0$
$\Leftrightarrow (\tan x-2)^2=-1< 0$ (vô lý)
Do đó pt vô nghiệm.
dạ cho em bổ sung câu a đề là \(tan^2x-\frac{4}{cosx}+5=0\)