a/
\(\Leftrightarrow cos^3x-sin^3x=cosx+sinx\)
- Với \(cosx=0\Rightarrow sinx=-1\Rightarrow x=-\frac{\pi}{2}+k2\pi\) là 1 nghiệm
- Với \(cosx\ne0\) chia 2 vế cho \(cos^3x\)
\(\Leftrightarrow1-tan^3x=\frac{1}{cos^2x}+tanx.\frac{1}{cos^2x}\)
\(\Leftrightarrow1-tan^3x=1+tan^2x+tanx\left(1+tan^2x\right)\)
\(\Leftrightarrow2tan^3x+tan^2x+tanx=0\)
\(\Leftrightarrow tanx\left(2tan^2x+tanx+1\right)=0\)
\(\Leftrightarrow tanx=0\Rightarrow x=k\pi\)
b/
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne\frac{\pi}{2}+k\pi\\x\ne-\frac{\pi}{4}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\frac{1-\frac{sinx}{cosx}}{1+\frac{sinx}{cosx}}=1+2sinx\)
\(\Leftrightarrow\frac{cosx-sinx}{cosx+sinx}=1+2sinx\)
\(\Leftrightarrow cosx-sinx=\left(1+2sinx\right)\left(cosx+sinx\right)\)
\(\Leftrightarrow sinx+sinx.cosx+sin^2x=0\)
\(\Leftrightarrow sinx\left(sinx+cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\sinx+cosx=-1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=-1\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\x+\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{2}+k2\pi\left(l\right)\\x=\pi+k2\pi\end{matrix}\right.\)
c/
ĐKXĐ: ...
Chia 2 vế cho \(cos^2x\) ta được:
\(\left(1+tanx\right)tan^2x=3tanx\left(1-tanx\right)+3\left(1+tan^2x\right)\)
\(\Leftrightarrow tan^3x+tan^2x=3tanx-3tan^2x+3+3tan^2x\)
\(\Leftrightarrow tan^3x+tan^2x-3tanx-3=0\)
\(\Leftrightarrow\left(tanx+1\right)\left(tan^2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=\sqrt{3}\\tanx=-\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)
them cau nay voi
d) \(sin^3\left(x+\frac{\pi}{4}\right)=\sqrt{2}sinx\)