1.
\(\Leftrightarrow2sin\frac{x}{2}cos\frac{x}{2}\left(cos^4\frac{x}{2}-sin^4\frac{x}{2}\right)=\frac{\sqrt{3}}{4}\)
\(\Leftrightarrow sinx\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)\left(cos^2\frac{x}{2}+sin^2\frac{x}{2}\right)=\frac{\sqrt{3}}{4}\)
\(\Leftrightarrow sinx.cosx=\frac{\sqrt{3}}{4}\)
\(\Leftrightarrow\frac{1}{2}sin2x=\frac{\sqrt{3}}{4}\)
\(\Leftrightarrow sin2x=\frac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{3}+k2\pi\\2x=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=\frac{\pi}{3}+k\pi\end{matrix}\right.\)
2.
\(\Leftrightarrow4cosx\left(cos\frac{2\pi}{3}+cos2x\right)=\sqrt{3}\)
\(\Leftrightarrow4cosx\left(cos2x-\frac{1}{2}\right)=\sqrt{3}\)
\(\Leftrightarrow4cos2x.cosx-2cosx=\sqrt{3}\)
\(\Leftrightarrow2cos3x+2cosx-2cosx=\sqrt{3}\)
\(\Leftrightarrow cos3x=\frac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=\frac{\pi}{6}+k2\pi\\3x=-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{18}+\frac{k2\pi}{3}\\x=-\frac{\pi}{18}+\frac{k2\pi}{3}\end{matrix}\right.\)
3.
ĐKXĐ: ...
\(\frac{1}{cosx}+\frac{1}{2sinx.cosx}=\frac{1}{2sinx.cosx.cos2x}\)
\(\Leftrightarrow2sinx.cos2x+cos2x=1\)
\(\Leftrightarrow2sinx.cos2x+1-2sin^2x=1\)
\(\Leftrightarrow2sinx\left(cos2x-sinx\right)=0\)
\(\Leftrightarrow cos2x-sinx=0\)
\(\Leftrightarrow1-2sin^2x-sinx=0\)
\(\Leftrightarrow2sin^2x+sinx-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\left(l\right)\\sinx=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)