Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Măm Măm

Giải các phương trình:

\(a,x\left(x+1\right)\left(x^2+x+1\right)=42\)

\(b,x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)

Akai Haruma
27 tháng 1 2019 lúc 20:36

Câu a:

\(x(x+1)(x^2+x+1)=42\)

\(\Leftrightarrow (x^2+x)(x^2+x+1)=42\)

Đặt \(x^2+x=a\) thì pt trở thành: \(a(a+1)=42\)

\(\Leftrightarrow a^2+a-42=0\Leftrightarrow (a-6)(a+7)=0\)

\(\Rightarrow \left[\begin{matrix} a=6\\ a=-7\end{matrix}\right.\)

Nếu $a=6$ \(\leftrightarrow x^2+x=6\leftrightarrow x^2+x-6=0\leftrightarrow (x-2)(x+3)=0\)

\(\Rightarrow \left[\begin{matrix} x=2\\ x=-3\end{matrix}\right.\)

Nếu $a=-7$

\(\leftrightarrow x^2+x=-7\Leftrightarrow x^2+x+7=0\)

\(\Leftrightarrow (x+\frac{1}{2})^2+\frac{27}{4}=0\) (vô lý)

Vậy pt có nghiệm \(x=2\) hoặc $x=-3$

Akai Haruma
27 tháng 1 2019 lúc 20:40

Câu b:

\(x(x+1)(x+2)(x+3)=24\)

\(\Leftrightarrow [x(x+3)][(x+1)(x+2)]=24\)

\(\Leftrightarrow (x^2+3x)(x^2+3x+2)=24\)

Đặt \(x^2+3x=a\) thì pt trở thành: \(a(a+2)=24\)

\(\Leftrightarrow a^2+2a+1=25\Leftrightarrow (a+1)^2=25\)

\(\Rightarrow a+1=\pm 5\Rightarrow \left[\begin{matrix} a=4\\ a=-6\end{matrix}\right.\)

Nếu $a=4$ \(\leftrightarrow x^2+3x=4\leftrightarrow x^2+3x-4=0\)

\(\leftrightarrow (x-1)(x+4)=0\Rightarrow x=1\) hoặc $x=-4$

Nếu \(a=-6\leftrightarrow x^2+3x=-6\leftrightarrow x^2+3x+6=0\leftrightarrow (x+\frac{3}{2})^2+\frac{15}{4}=0\)(vô lý)

Do đó pt có nghiệm $x=1$ hoặc $x=-4$


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Thỏ Nghịch Ngợm
Xem chi tiết
nguyet nguyen
Xem chi tiết
Thỏ Nghịch Ngợm
Xem chi tiết
nguyễn hoài thu
Xem chi tiết
Thỏ Nghịch Ngợm
Xem chi tiết
Big City Boy
Xem chi tiết
Núi non tình yêu thuần k...
Xem chi tiết
Chuột yêu Gạo
Xem chi tiết