Đặt \(x^2-3x+3=t>0\)
\(\sqrt{t}+\sqrt{t+3}\ge3\)
\(\Leftrightarrow2t+3+2\sqrt{t^2+3t}\ge9\)
\(\Leftrightarrow\sqrt{t^2+3t}\ge3-t\)
- Với \(t>3\Rightarrow\left\{{}\begin{matrix}VT>0\\VP< 0\end{matrix}\right.\) BPT luôn đúng
- Với \(t\le3\)
\(\Leftrightarrow t^2+3t\ge t^2-6t+9\Rightarrow t\ge1\)
Vậy nghiệm của BPT là \(t\ge1\Leftrightarrow\sqrt{x^2-3x+3}\ge1\)
\(\Leftrightarrow x^2-3x+2\ge0\Rightarrow\left[{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\)