Giải phương trình: (x-1)^3+(2x-3)^3+(3x-5)^3-3.(x-1).(2x-3).(3x-5)=0
a) giải bất phương trình : x2 - 2x + 1 < 9 ( giải 2 cách )
b) giải bất phương trình : x2 - 5x + 6 < 0
Giải phương trình sau:
\(^{\left(x^2+1\right)^2}\)+3x\(^{\left(x^2+1\right)^2}\)+\(^{2x^2}\)=0
Câu 1 : Giải phương trình
a. 5(x-3)-4=2(x-1)
b. 5-(6-x)=4(3-2x)
c. (3x+5)(2x+1)=(6x-2)(x-3)
d. (x+2)2 + 2(x-4)=(x-4)(x-2)
Bài 2 : Giải phương trình
a) x/3 - 5x/6 - 15x/12 = x/4 - 5
b) 8x-3/4 - 3x-2/2 = 2x-1/2 + x+3/4
c) x-1/2 - x+1/15 - 2x-13/6 = 0
d) 3(3-x)/8 + 2(5-x)/3 = 1-x/2 - 2
e) 3(5x-2)/4 - 2 = 7x/3 - 5(x-7)
Bài 3 Giải phương trình
a) (5x-4)(4x+6)=0
b) (x-5)(3-2x)(3x+4)=0
c) (2x+1)(x2+2)=0
d) (8x-4)(x2+2x+2)=0
Bài 4 Giải phương trình
a) (x-2)(2x+3)=(x-1)(x-2)
b) (2x+5)(x-4)=(x-5)(4-x)
c) 9x2 -1 =(3x+1)(2x-3)
d) (x+2)2=9(x2-4x+4)
e)4(2x+7)2 -9(x+3)2 =0
Bài 5 Giải phương trình
a) (9x2 -4)(x+1)=(3x+2)(x2 -1)
b) (x-1)2 -1+x2 =(1-x)(x+3)
c) x4 +x3 3+x+1=0
Giải các bất phương trình:
\(a,\frac{2x}{5}+\frac{3-2x}{3}\ge\frac{3x+2}{2}\)
\(b,1-\frac{2x-5}{6}>\frac{3-x}{4}\)
giải phương trình
a) \(\frac{4x-8}{2x^2+1}=0\)
b)\(\frac{x^2-x-6}{x-3}=0\)
c)\(\frac{x+5}{3x-6}-\frac{1}{2}=\frac{2x-3}{2x-4}\)
d)\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
Giải các bất phương trình:
\(a,\frac{3x-2}{x+4}\ge0\)
\(b,\frac{\left(2x+3\right)\left(x-1\right)}{x+2}>0\)
Giải phương trình và bất phương trình sau:
a/ \(\frac{x+1}{x}+1=\frac{3x-1}{x+1}+\frac{1}{x\left(x+1\right)}\)
b/\(\frac{2x+1}{3}-\frac{3x-2}{2}>\frac{1}{6}\)
Bài 1:Giải Phương trình:
a) \(\frac{x-1}{x}+\frac{1-2x}{x^2+x}=\frac{1}{x+1}\)
b)\(\frac{13}{\left(x-3\right).\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)
c) \(\frac{x}{x-1}-\frac{2x}{x^2-1}=0\)
d)\(\frac{x^2+2x}{x^2+1}-2x=0\)
Bài 2: Giải phương trình (x –1)(x2 +3x –2 ) – (x3 –1) =0
Bài 3: Giải phương trình (x –1)(x2 +3x –2 ) – (x3 –1) =0
Bài 4:
Bằng cách phân tích vế trái thành nhân tử rồi giải các phương tr ình sau:
a) 2x(x – 3) +5(x – 3) = 0
b) (x2 – 4) +(x –2)(3 –2x ) = 0
c) x3 –3x2 + 3x – 1 = 0
d) x(2x –7) – 4x + 14 = 0