a/b=2,1/2,8
nen a/3=b/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{5a-4b}{5\cdot3-4\cdot4}=\dfrac{-1}{-1}=1\)
Do đó: a=3; b=4
\(a^2+b^2=25\)
a/b=2,1/2,8
nen a/3=b/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{5a-4b}{5\cdot3-4\cdot4}=\dfrac{-1}{-1}=1\)
Do đó: a=3; b=4
\(a^2+b^2=25\)
GT a^2+b^2 biet a/b=2,1/2,8; 5a-4b=1
cho a/b=2,1/2,7 , 5a-4b=-1 hỏi (a-b)^2=...
1,Giá trị x thỏa mãn : \(\frac{x}{-8}=\frac{-18}{x}\)
2, Tập hợp giá trị x nguyên thỏa mãn : | 2x-7| + | 2x + 1 | \(\le\) 8
3,Cho \(\frac{a}{b}=\frac{2,1}{2,7}\) ; 5a- 4b = -1 . Giá trị \(\left(a-b\right)^2\) là
4, Cho \(\frac{a}{b}=\frac{9,6}{12,8};a^2+b^2=25\) . Giá trị | a + b| là ......
Cho a+b+c+d khác 0 sao cho: \(\dfrac{b+c+d}{a}=\dfrac{a+c+d}{b}=\dfrac{b+a+d}{c}=\dfrac{c+b+a}{d}\)
Hãy tính: M = \(\dfrac{2a+5b}{3c+4d}-\dfrac{2b+5c}{3d+4a}-\dfrac{2c+5d}{3a+4b}+\dfrac{2d+5a}{3c+4b}\)
Cho tỉ lệ thức: \(\dfrac{3a+4b}{5a-6b}=\dfrac{3c+4d}{5c-6d}\)
CMR: \(\dfrac{a}{b}=\dfrac{c}{d}\)
Cho A = \(\dfrac{5a+2b+8c}{-7a-4b+6c}\) với a:b:c = 1:2:3 . Vậy A bằng :
a, CMR : nếu \(\dfrac{a}{b}=\dfrac{c}{d}\) thì \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\) ( gt các tỉ số đều có nghĩa )
b, tìm x,biết: \(\dfrac{x-1}{2017}+\dfrac{x-2}{2016}+\dfrac{x-3}{2015}=\dfrac{x-4}{2014}\)
Chứng minh rằng nếu \(\dfrac{a}{b}=\dfrac{c}{d}\) thì
a, \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5a-3d}\)
b, \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Tìm a,b,c biết: \(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-5c}{2}\) và a+b+c=-50