Bài 1: Tính
1, \(A=\left(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\right).\left(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
2, \(B=\left(\frac{3\sqrt{125}}{15}-\frac{10-4\sqrt{6}}{\sqrt{5}-2}\right).\frac{1}{\sqrt{5}}\)
3, \(C=\left(\frac{\sqrt{1000}}{100}-\frac{5\sqrt{2}-2\sqrt{5}}{2\sqrt{5}-8}\right).\frac{\sqrt{10}}{10}\)
4, \(D=\frac{1}{\sqrt{49+20\sqrt{6}}}-\frac{1}{\sqrt{49-20\sqrt{6}}}+\frac{1}{\sqrt{7-4\sqrt{3}}}\)
5, \(E=\frac{1}{\sqrt{4-2\sqrt{3}}}-\frac{1}{\sqrt{7-\sqrt{48}}}+\frac{3}{\sqrt{14-6\sqrt{5}}}\)
6, \(F=\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
7, \(G=\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}-\sqrt{11-2\sqrt{10}}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}+\sqrt{12+8\sqrt{2}}}}\)
1,Trục căn thức ở mẫu, rút gọn: ( với \(x\ge0;x\ne1\))
a,\(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)
b,\(\frac{\sqrt{2}+1}{\sqrt{2}-1}\)
2,Chứng minh các đẳng thức sau:
a,\(\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}=1\)
b,\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}\)
c,\(\left(\frac{\sqrt{a}}{\sqrt{a}+2}+\frac{\sqrt{a}}{\sqrt{a}-2}+\frac{4\sqrt{a}-1}{a-4}\right):\frac{1}{a-4}=-1\)
d,\(\frac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\frac{2b}{b-a}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
Bài tập:Rút gọn
1.\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
2. \(2\sqrt{27}-6\sqrt{\frac{4}{3}}+\frac{3}{5}\sqrt{75}\)
3. \(8\sqrt{3}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
4.\(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)
5.(\(\sqrt{12}+\sqrt{75}+\sqrt{27}\)):\(\sqrt{15}\)
6.\(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)
THỰC HIỆN PHÉP TÍNH:
22) \(\frac{1}{\sqrt{5}+\sqrt{2}}+\frac{1}{\sqrt{5}-\sqrt{2}}\)
23) \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
24) \(\frac{\sqrt{18}}{\sqrt{2}}-\frac{\sqrt{12}}{\sqrt{3}}\)
25) \(\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
27) \(\sqrt{3-2\sqrt{2}}\)
28) \(\frac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-2\sqrt{2}\)
30) \(\left(2\sqrt{1\frac{9}{16}}-\sqrt{5\frac{1}{16}}\right):\sqrt{16}\)
34) \(\frac{\left(5\sqrt{3}+\sqrt{50}\right)\left(5-\sqrt{24}\right)}{\sqrt{75}-5\sqrt{2}}\)
35) \(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\frac{1}{4}\sqrt{8}\right).3\sqrt{6}\)
36) \(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}\)
39) \(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}}\)
45) \(\frac{\sqrt{6-2\sqrt{5}}}{2-\sqrt{20}}\)
thực hiện phép tính:
1, \(\sqrt{5+2\sqrt{24}}-\sqrt{2}\)
2, \(\frac{3-2\sqrt{3}}{\sqrt{3}-2}\) 3, \(\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\)
4, \(\frac{1}{1-\sqrt{2}}-\frac{1}{1+\sqrt{2}}\) 5, \(\frac{\sqrt{12}-6}{\sqrt{8}-\sqrt{24}}-\frac{3-\sqrt{3}}{\sqrt{3}}-\frac{4}{1-\sqrt{7}}\)
rút gọn biểu thức
a) \(\frac{3}{2+\sqrt{3}}+\frac{13}{4-\sqrt{3}}+\frac{6}{\sqrt{3}}\)
b) \(\left(\frac{\sqrt{14}-\sqrt{7}}{\sqrt{2}-1}+\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
c) \(\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{28-10\sqrt{3}}\)
d) \(\frac{3}{3+2\sqrt{3}}+\frac{3}{3-2\sqrt{3}}\)
e) \(\sqrt{20}-15\sqrt{\frac{1}{5}}+\sqrt{\left(1-\sqrt{5}\right)^2}\)
Tính B = \(\frac{1+xy}{x+y}-\frac{1-xy}{x-y}vớix=\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}.\sqrt{2-\sqrt{2+\sqrt{2}}}}y=\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}\)
a,\(\frac{2\sqrt{2}}{\sqrt{2\sqrt{2}+1}+1}-\frac{2\sqrt{2}}{\sqrt{2\sqrt{2}+1}-1}\)
b,\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}\)
c,\(\frac{2}{\sqrt{3}-\sqrt{5}}+\frac{3-2\sqrt{3}}{\sqrt{3}-2}\)
d,\(\frac{-4}{\sqrt{7}-\sqrt{5}}+\frac{1}{\sqrt{3}-1}+\frac{4-2\sqrt{5}}{\sqrt{5}-2}\)
e,\(\frac{6}{\sqrt{5}-1}+\frac{7}{1-\sqrt{3}}-\frac{2}{\sqrt{3}-\sqrt{5}}\)
A=\(\left(\frac{\sqrt{6}-\sqrt{5}}{\sqrt{2}-1}+\frac{5-\sqrt{5}}{\sqrt{5}-1}\right):\frac{2}{\sqrt{5}-\sqrt{3}}\)
B=\(\frac{4+\sqrt{2}-\sqrt{3}-\sqrt{6}+\sqrt{8}}{2+\sqrt{2}-\sqrt{3}}\)