help me please!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
help me please!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Chứng minh:
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}...+\frac{1}{100^2}< 1\)
chứng minh rằng :\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.........+\frac{1}{100^2}< 1\)
bài 1: So sánh
a,\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2} và 1 \)
b,\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2} và 1\)
Chứng minh rằng: \(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+.....+\frac{1}{2.\left(n\right)^2}< \frac{1}{4}\)Với n thuộc N,n lớn hơn hoặc bằng 2
Bài 1:Chứng tỏ rằng
a)\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}< 1\)
b)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
c)\(\frac{2}{5}< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{8}{9}\)
d)\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Bài 2:Cho M=\(\frac{1}{15}+\frac{1}{105}+\frac{1}{315}+..+\frac{1}{9177}\).So sánh với 12
Bài 3:Với giá trị nào của x \(\in\) Z các phân số sau có giá trị là 1 số nguyên
a)A=\(\frac{3}{x-1}\) b)B=\(\frac{x-2}{x+3}\) c)C=\(\frac{2x+1}{x-3}\) d)D=\(\frac{x^2-1}{x+1}\)
Bài 4:a) Chứng tỏ rằng các phân số sau tối giản với mọi số tự nhiên n
a)\(\frac{n+1}{2n+3}\) b)\(\frac{2n+3}{4n+8}\)
Mình đang cần gấp lắm ,làm ơn
CMR:
\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+\(\frac{1}{5^2}\)+..........+\(\frac{1}{100^2}\) < 1
Tính nhanh (nếu có thể):
\(a,\frac{\frac{3}{41}-\frac{12}{47}+\frac{27}{53}}{\frac{4}{41}-\frac{16}{47}+\frac{36}{53}}+\frac{-0,25.\frac{-2}{3}-75\%:(\frac{-1}{2}+\frac{2}{3})}{|-1\frac{1}{2}|.(\frac{-2}{3}-0,75:\frac{3}{-2})}\)
\(b,A=158.(\frac{12-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{5+\frac{5}{13}+\frac{5}{169}+\frac{5}{91}}{6+\frac{6}{13}+\frac{6}{169}+\frac{6}{91}}).\frac{50550505}{711711711}\)
Bài 1.So Sánh
a,\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}+\frac{1}{12^2} và \frac{1}{2}\)
b,\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}và \)\(\frac{1}{2}\)
Bài 2: a,Tìm n để \(\frac{3n+1}{n+1} \)là 1 số nguyên
b,\((n+1)^n\)= 64 (n thuộc Z)
So sánh 2 số:
A=1 và B= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}+\frac{1}{100^2}\)
Bạn nào giỏi chỉ với