1/22+1/32+1/42+1/52...+1/1002<1/1.2+1/2.3+1/3.4+1/4.5...+1/99.100
= 1-1/2+1/2-1/3+...+1/99-1/100= 1-1/100=99/100 < 1
1/22+1/32+1/42+1/52...+1/1002<1/1.2+1/2.3+1/3.4+1/4.5...+1/99.100
= 1-1/2+1/2-1/3+...+1/99-1/100= 1-1/100=99/100 < 1
chứng minh rằng :\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.........+\frac{1}{100^2}< 1\)
Bài 1:Chứng tỏ rằng
a)\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}< 1\)
b)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
c)\(\frac{2}{5}< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{8}{9}\)
d)\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Bài 2:Cho M=\(\frac{1}{15}+\frac{1}{105}+\frac{1}{315}+..+\frac{1}{9177}\).So sánh với 12
Bài 3:Với giá trị nào của x \(\in\) Z các phân số sau có giá trị là 1 số nguyên
a)A=\(\frac{3}{x-1}\) b)B=\(\frac{x-2}{x+3}\) c)C=\(\frac{2x+1}{x-3}\) d)D=\(\frac{x^2-1}{x+1}\)
Bài 4:a) Chứng tỏ rằng các phân số sau tối giản với mọi số tự nhiên n
a)\(\frac{n+1}{2n+3}\) b)\(\frac{2n+3}{4n+8}\)
Mình đang cần gấp lắm ,làm ơn
Chứng minh rằng:
a) \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}<1\)
b) \(\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{1000!}<\frac{1}{9!}\)
Chứng minh rằng: \(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+.....+\frac{1}{2.\left(n\right)^2}< \frac{1}{4}\)Với n thuộc N,n lớn hơn hoặc bằng 2
Câu 1: Chứng minh rằng:
\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+\(\frac{1}{5^2}\)+\(\frac{1}{6^2}\).....+\(\frac{1}{100^2}\)<\(\frac{1}{2}\)
Câu 2: Rút gọn biểu thức:
A=\(\left(\frac{1}{2}+1\right)\).\(\left(\frac{1}{3}+1\right)\).\(\left(\frac{1}{4}+ 1\right)\)....\(\left(\frac{1}{98}+1\right)\).\(\left(\frac{1}{99}+1\right)\)
\(Mn giúp êm với ạ\) ω
Mơn mn nhìu❤
A=\(\frac{1}{2^2}\) +\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}\)+...+\(\frac{1}{2014^2}\). Chứng tỏ A < \(\frac{3}{4}\)
Chứng minh:
\(\frac{1}{4^2}\)+ \(\frac{1}{5^2}\)+\(\frac{1}{6^2}\)+...+\(\frac{1}{64^2}\)<\(\frac{5}{16}\)
\(\frac{1}{4^2}\)Giúp mik vs!!!!!!
CMR:
\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+\(\frac{1}{5^2}\)+..........+\(\frac{1}{100^2}\) < 1
Thực hiện phép tính
\(a,(\frac{-5}{28}+1,75+\frac{8}{35}).(-3\frac{9}{20})\) \(b,(6-2\frac{4}{5}).3\frac{1}{8}-1\frac{3}{5}:\frac{1}{4}\)
\(c,(\frac{7-5}{24}+0,75+\frac{7}{12}):(-2\frac{1}{8})\) \(d,8\frac{2}{7}-(3\frac{4}{7}+4\frac{2}{7})\)
\(e,\left(-3,2\right).\frac{-15}{64}+(0,8-2\frac{4}{15}):3\frac{2}{3}\) \(f,1\frac{13}{15}.\left(0,5\right)^2.3+(\frac{8}{15}-1\frac{19}{60}):1\frac{23}{24}\)
\(g,1,4.\frac{15}{49}-(\frac{4}{5}+\frac{2}{3}):2\frac{1}{5}\)