VT\(< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{63.64}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-...-\frac{1}{64}=\frac{15}{64}< \frac{5}{16}\)
Vậy ta có đpcm.
VT\(< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{63.64}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-...-\frac{1}{64}=\frac{15}{64}< \frac{5}{16}\)
Vậy ta có đpcm.
Tính nhanh (nếu có thể):
\(a,\frac{\frac{3}{41}-\frac{12}{47}+\frac{27}{53}}{\frac{4}{41}-\frac{16}{47}+\frac{36}{53}}+\frac{-0,25.\frac{-2}{3}-75\%:(\frac{-1}{2}+\frac{2}{3})}{|-1\frac{1}{2}|.(\frac{-2}{3}-0,75:\frac{3}{-2})}\)
\(b,A=158.(\frac{12-\frac{12}{7}-\frac{12}{289}-\frac{12}{85}}{4-\frac{4}{7}-\frac{4}{289}-\frac{4}{85}}:\frac{5+\frac{5}{13}+\frac{5}{169}+\frac{5}{91}}{6+\frac{6}{13}+\frac{6}{169}+\frac{6}{91}}).\frac{50550505}{711711711}\)
Thực hiện phép tính
\(a,(\frac{-5}{28}+1,75+\frac{8}{35}).(-3\frac{9}{20})\) \(b,(6-2\frac{4}{5}).3\frac{1}{8}-1\frac{3}{5}:\frac{1}{4}\)
\(c,(\frac{7-5}{24}+0,75+\frac{7}{12}):(-2\frac{1}{8})\) \(d,8\frac{2}{7}-(3\frac{4}{7}+4\frac{2}{7})\)
\(e,\left(-3,2\right).\frac{-15}{64}+(0,8-2\frac{4}{15}):3\frac{2}{3}\) \(f,1\frac{13}{15}.\left(0,5\right)^2.3+(\frac{8}{15}-1\frac{19}{60}):1\frac{23}{24}\)
\(g,1,4.\frac{15}{49}-(\frac{4}{5}+\frac{2}{3}):2\frac{1}{5}\)
Chứng minh:
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}...+\frac{1}{100^2}< 1\)
Chứng minh rằng: \(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+.....+\frac{1}{2.\left(n\right)^2}< \frac{1}{4}\)Với n thuộc N,n lớn hơn hoặc bằng 2
tìm x biết
a)
\(\frac{1}{2}\)+\(\frac{2}{3}\).x=\(\frac{4}{5}\)
b)
x+\(\frac{1}{4}\)=\(\frac{4}{3}\)|
c)
\(\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\)
|d)
\(\left|x+5\right|-6=9\)
e)
\(\left|x-\frac{4}{5}\right|=\frac{3}{4}\)
f)
\(\frac{1}{2}-\left|x\right|=\frac{1}{3}\)
g)
\(^{x^2}\)=16
h)
\(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
i)
\(^{3^3}\).x=\(^{3^6}\)
j)
\(\frac{1,35}{0,2}=\frac{1,25}{x}\)
k)
\(1\frac{2}{3}:x=6:0,3\)
Câu 1: Chứng minh rằng:
\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+\(\frac{1}{5^2}\)+\(\frac{1}{6^2}\).....+\(\frac{1}{100^2}\)<\(\frac{1}{2}\)
Câu 2: Rút gọn biểu thức:
A=\(\left(\frac{1}{2}+1\right)\).\(\left(\frac{1}{3}+1\right)\).\(\left(\frac{1}{4}+ 1\right)\)....\(\left(\frac{1}{98}+1\right)\).\(\left(\frac{1}{99}+1\right)\)
\(Mn giúp êm với ạ\) ω
Mơn mn nhìu❤
A=\(\frac{1}{2^2}\) +\(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}\)+...+\(\frac{1}{2014^2}\). Chứng tỏ A < \(\frac{3}{4}\)
Bài 1.So Sánh
a,\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}+\frac{1}{12^2} và \frac{1}{2}\)
b,\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}và \)\(\frac{1}{2}\)
Bài 2: a,Tìm n để \(\frac{3n+1}{n+1} \)là 1 số nguyên
b,\((n+1)^n\)= 64 (n thuộc Z)
Bài 1 : Chứng tỏ rằng : \(\frac{14n+3}{21n+5}\) là phân số tối giản với mọi n ϵ Z
Bài 2 Tìm x , biết
30 : \(\left(\frac{1}{4}x+\frac{3}{4}x\right)^2=\frac{5}{6}\)
Bài 3 Tính tích : A= \(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{899}{900}\)