Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lightning Farron

Find the maximum and minimum value of the expression

\(\frac{x+y+z}{3}+\frac{2016}{\sqrt[3]{xyz}}\)if \(x,y,z\in\left[1,2016\right]\)

Hoàng Lê Bảo Ngọc
11 tháng 8 2016 lúc 19:57

Đặt \(A=\frac{x+y+z}{3}+\frac{2016}{\sqrt[3]{xyz}}\)

Tìm giá trị nhỏ nhất : 

Áp dụng bđt Cauchy : \(A=\frac{x+y+z}{3}+\frac{2016}{\sqrt[3]{xyz}}\ge\frac{3.\sqrt[3]{xyz}}{3}+\frac{2016}{\sqrt[3]{xyz}}\)

\(\Rightarrow A\ge\sqrt[3]{xyz}+\frac{2016}{\sqrt[3]{xyz}}\ge2\sqrt{\sqrt[3]{xyz}.\frac{2016}{\sqrt[3]{xyz}}}\)

\(\Rightarrow A\ge2\sqrt{2016}=24\sqrt{14}\) . 

Dấu "=" xảy ra khi và chỉ khi \(\begin{cases}x=y=z\\\sqrt[3]{xyz}=\frac{2016}{\sqrt[3]{xyz}}\end{cases}\) \(\Leftrightarrow x=y=z=12\sqrt{14}\)

Vậy A đạt giá trị nhỏ nhất bằng \(24\sqrt{14}\) tại \(x=y=z=12\sqrt{14}\)

 

 


Các câu hỏi tương tự
Hoàng Huệ Cẩm
Xem chi tiết
Nguyễn Minh Đức
Xem chi tiết
Phạm Thị Thủy
Xem chi tiết
Nguyễn Minh Đức
Xem chi tiết
Lê Thanh Phương
Xem chi tiết
erosennin
Xem chi tiết
BÙI VĂN LỰC
Xem chi tiết
Phan thu trang
Xem chi tiết
Nguyễn Minh Đức
Xem chi tiết