1.cho A= \(\frac{x}{x-\sqrt{x}+1}\)
B=\(\frac{x+2\sqrt{x}+1}{x\sqrt{x}+1}\)
với x≥ 0
a,tính A khi x= \(\frac{\sqrt{2}-1}{\sqrt{2}+1}\)
b,RG P =\(\frac{1-A}{B}\)
2.a,giải hpt: \(\left\{{}\begin{matrix}2\left|x+1\right|-5y=3\\\left|x+1\right|+2y=\frac{-3}{5}\end{matrix}\right.\)
b, cho (d) :y=9m-1)x-m+2
(p)y=\(\frac{1}{2}\)x2
tìm mđể (d)cắt (p) tại 2 điểm pb A(x1;y1);B(x2;y2) sao cho AB=\(\sqrt{2}\)
3. Ô tô đi A→B dài 120km.ô tô xuất phát sau xe máy 30' và đi vs vận tốc lớn hơn xe máy là 24km/h.tính v của mỗi xe biết ô tô đến sớm hơn xe máy 20'
B=\(\left(1-\frac{4\sqrt{x}}{x-1}+\frac{1}{\sqrt{x}-1}\right):\frac{x-2\sqrt{x}}{x-1}\)
rút gọn B
\(\left\{{}\begin{matrix}2\left(x-2x\right)+\sqrt{y+1}=0\\3\left(x^2-2x\right)-2\sqrt{y+1}=-7\end{matrix}\right.\)
(x-1)\(\left(\frac{600}{x}+30\right)=600\)
Giải các hệ phương trình sau bằng cách đặt ẩn số phụ:
1) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}\dfrac{2}{x+2y}+\dfrac{1}{y+2x}=3\\\dfrac{4}{x+2y}-\dfrac{3}{y+2x}=1\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)
4) \(\left\{{}\begin{matrix}x^2+y^2=13\\3x^2-2y^2=-6\end{matrix}\right.\)
5) \(\left\{{}\begin{matrix}3\sqrt{x}+2\sqrt{y}=16\\2\sqrt{x}-3\sqrt{y}=-11\end{matrix}\right.\)
6) \(\left\{{}\begin{matrix}|x|+4|y|=18\\3|x|+|y|=10\end{matrix}\right.\)
GIẢI GIÚP MÌNH VỚI M.N
\(\left\{{}\begin{matrix}\frac{x+3}{9}+\frac{2x-y}{12}=4\\\frac{2x-5y}{3}-\frac{3x-7y}{11}=-55\end{matrix}\right.\)
\(\frac{2.1}{x-1}+\frac{1}{x+1}=\frac{4}{3}\)
cần gấp ạ !!
Pt vô tỉ :
\(\sqrt{x^2+4x+3}+\sqrt{x^2+x}=\sqrt{3x^2+4x+1}\)
\(\left(x+3\right)\sqrt{10-x^2}=x^2-x-12\)
\(\sqrt{\dfrac{x^3+1}{x+3}}+\sqrt{x+3}=\sqrt{x^2-x+1}+\sqrt{x+1}\)
Cho phương trình x2 +(2m+1)x + m2 + 2=0
a) Tìm các giá trị của m để phương trình có nghiệm
b) Trong trường hợp phương trình có nghiệm là x1 , x2 hãy tính theo m :
x1 + x2 ; x1 . x2 ; x12 + x22