\(\sqrt{18b^3\cdot\left(1-2a\right)^2}\)
\(=3\sqrt{2}\cdot b\sqrt{b}\cdot\left|1-2a\right|\)
\(=3\sqrt{2}\left(2a-1\right)\cdot b\sqrt{b}\)
\(\sqrt{18b^3\cdot\left(1-2a\right)^2}\)
\(=3\sqrt{2}\cdot b\sqrt{b}\cdot\left|1-2a\right|\)
\(=3\sqrt{2}\left(2a-1\right)\cdot b\sqrt{b}\)
đưa thừa số ra ngoài dấu căn :
a) a2\(\sqrt{\dfrac{2}{3a}}\)( a > 0 )
b) \(\dfrac{x-3}{x}\)\(\sqrt{\dfrac{x^3}{9-x^2}}\)(0<x<3)
đưa thừa số ra ngoài dấu căn của những biểu thức sau
a. \(\sqrt{27\left(9-4\sqrt{5}\right)}\)
b.\(\sqrt{a^4b^5}\)
c. \(\sqrt{a^3\left(1-a\right)^4}\) (a>1)
d. \(\sqrt{\dfrac{1}{a}-\dfrac{1}{a^2}}\left(a>1\right)\)
Đưa thừa số ra ngoài dấu căn
a.
\(\left(\sqrt{28}-5\sqrt{35}+7\sqrt{112}\right)2\sqrt{7}\)
b. \(\left(\sqrt{72}-3\sqrt{24}+5\sqrt{8}\right)\sqrt{2}+4\sqrt{27}\)
Bài 1: Đưa thừa số ra ngoài dấu căn a. √48a⁴b² ( với b < 0 ) b. √-25x³ ( với x < 0 )
1. Đưa thưà số ra ngoài dấu căn
\(\sqrt{27^{ }a^2}\)
2.Đưa thừa số vào tong dấu căn
\(\dfrac{2}{3}\sqrt{3xy}\)
3.Rút gọn
\(\sqrt{16b}\) + 2\(\sqrt{40b}\) - 3\(\sqrt{90b}\)
Đưa thừa số vào trong dấu căn:\(\dfrac{2+2\sqrt{5}}{3-\sqrt{5}}\).\(\sqrt{\dfrac{24-8\sqrt{5}}{3+3\sqrt{5}}}\)
Đưa thừa số vào trong dấu căn a.\(\sqrt{\dfrac{-15}{a}}\)(a<0)
Câu 1:
A=\(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
Rút gọn A
Câu 2:
A=\(\dfrac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}\) Biết tử số có 2016 dấu căn, mẫu số có 2015 dấu căn. Chứng minh A<\(\dfrac{1}{4}\)
Câu 3:Cho 3 số dương x, y, z thỏa măn điều kiện: xy+yz+xz=1
Tính A=\(x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Mọi người làm nhanh nha, mai mình kt 1 tiết rồi
Rút gọn các biểu thức sau:
\(A=\dfrac{a^2-1}{3}\sqrt{\dfrac{9}{\left(1-a\right)^2}}\) với a < 1
\(B=\sqrt{\left(3a-5\right)^2}-2a+4\) với a < \(\dfrac{1}{2}\)
\(C=4a-3-\sqrt{\left(2a-1\right)^2}\) với a < 2
\(D=\dfrac{a-2}{4}\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\) với a < 2