A = 2cosx + 3cos(π - x) - sin\(\left(2\pi-\dfrac{\pi}{2}-x\right)+tan\left(4\pi-\dfrac{\pi}{2}-x\right)\)
A = 2cosx - 3cosx + sin\(\left(\dfrac{\pi}{2}+x\right)-tan\left(\dfrac{\pi}{2}+x\right)\)
A = -cosx + cosx + cotx
A = cotx
A = 2cosx + 3cos(π - x) - sin\(\left(2\pi-\dfrac{\pi}{2}-x\right)+tan\left(4\pi-\dfrac{\pi}{2}-x\right)\)
A = 2cosx - 3cosx + sin\(\left(\dfrac{\pi}{2}+x\right)-tan\left(\dfrac{\pi}{2}+x\right)\)
A = -cosx + cosx + cotx
A = cotx
a, cho tan a=3 . tính gt của biểu thức
\(\dfrac{\sin a\cos a+\cos^2a}{2\sin^2a-\cos^2a}\)
b, c/m đẳng thức
\(\cot\left(\dfrac{\pi}{2}-x\right)\cos\left(\dfrac{\pi}{2}+x\right)+\dfrac{\sin\left(\pi-x\right)\cot x}{1-\sin^2x}=\cos x\)
Cho α ∈ (0;\(\dfrac{\Pi}{2}\)) và tan α = 3. Khi đó sin(α +π) bằng
Cho\(\pi< a< \dfrac{3\pi}{2}\).Trong các khẳng định sau khẳng định nào đúng?
A sin(\(\dfrac{7\pi}{2}+a\))>0
B sin(\(\dfrac{7\pi}{2}+a\))≥0
C sin(\(\dfrac{7\pi}{2}+a\))<0
D sin(\(\dfrac{7\pi}{2}+a\))≤0
Chứng minh các biểu thức sau không phụ thuộc x :
a) \(A=\sin\left(\dfrac{\pi}{4}+x\right)-\cos\left(\dfrac{\pi}{4}-x\right)\)
b) \(B=\cos\left(\dfrac{\pi}{6}-x\right)-\sin\left(\dfrac{\pi}{3}+x\right)\)
c) \(C=\sin^2x+\cos\left(\dfrac{\pi}{3}-x\right).\cos\left(\dfrac{\pi}{3}+x\right)\)
d) \(D=\dfrac{1-\cos2x+\sin2x}{1+\cos2x+\sin2x}.\cot x\)
Chứng minh các đồng nhất thức :
a) \(\dfrac{1-\cos x+\cos2x}{\sin2x-\sin x}=\cot x\)
b) \(\dfrac{\sin x+\sin\dfrac{x}{2}}{1+\cos x+\cos\dfrac{x}{2}}=\tan\dfrac{x}{2}\)
c) \(\dfrac{2\cos2x-\sin4x}{2\cos2x+\sin4x}=\tan^2\left(\dfrac{\pi}{4}-x\right)\)
d) \(\tan x-\tan y=\dfrac{\sin\left(x-y\right)}{\cos x\cos y}\)
Không sử dụng máy tính, hãy tính :
a) \(\cos\dfrac{22\pi}{3}\)
b) \(\sin\dfrac{23\pi}{4}\)
c) \(\sin\dfrac{25\pi}{3}-\tan\dfrac{10\pi}{3}\)
d) \(\cos^2\dfrac{\pi}{8}-\sin^2\dfrac{\pi}{8}\)
Sin(x-π/2)+cos(x-π)+tan(5π/2-x)+tan(x-π/2)=-2cosx
Trong các đẳng thức sau, đẳng thức nào đúng, đẳng thức nào sai ?
a) \(\sin\left(x+\dfrac{\pi}{2}\right)=\cos x\)
b) \(\cos\left(x+\dfrac{\pi}{2}\right)=\sin x\)
c) \(\sin\left(x-\pi\right)=\sin x\)
d) \(\cos\left(x-\pi\right)=\cos x\)
Rút gọn các biểu thức :
a) \(\dfrac{2\sin2\alpha-\sin4\alpha}{2\sin2\alpha+\sin4\alpha}\)
b) \(\tan\alpha\left(\dfrac{1+\cos^2\alpha}{\sin\alpha}-\sin\alpha\right)\)
c) \(\dfrac{\sin\left(\dfrac{\pi}{4}-\alpha\right)+\cos\left(\dfrac{\pi}{4}-\alpha\right)}{\sin\left(\dfrac{\pi}{4}-\alpha\right)-\cos\left(\dfrac{\pi}{4}-\alpha\right)}\)
d) \(\dfrac{\sin5\alpha-\sin3\alpha}{2\cos4\alpha}\)